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SUMMARY

This thesis work developed a Design Space Exploration Decision Support Method-

ology DSE −DSM applicable to arbitrary design spaces and ultimately utilized to

enable the efficient conceptual design of advanced aircraft concepts. It was observed

for design problems of interest that the resultant feasible design space could be non-

hypercubic due to the potential presence of correlated variables and explicit and/or

embedded constraints. Thus, to conserve computational effort in exploring and un-

derstanding this space, a methodology was proposed to first provide hypercubic clas-

sification for a given design space and then if necessary, efficiently bound this space,

and ultimately provide guidance on where the feasible regions of the design space

exist.

In order to classify a given design space, the Mutual Information metric was

utilized to detect the presence of any non-hypercubic features within the design space

which would manifest as correlations between design variables. Using a globally

classified initial sample of the design space, Mutual Information was demonstrated

through experimentation to be a reliable hypercubic classifier when provided sufficient

design space resolution to resolve features within the space. In order to quantify this

sampling resolution requirement, a new similarity parameter coined equivalent ‘Levels

Per Dimension’ LPD was defined to account for the exponential nature of design space

volume growth with the addition of dimensions.

Once classified, the characteristics of the given design space as well as the exper-

imental apparatus and available resources were utilized to provide informed design

space exploration guidance. Based on a combination of three metrics encompassing
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the percentage of feasible designs within the initial sample, the result of the hyper-

cubic classification and the relative expense and consequence associated with design

space exploration, suggestions are provided on how to most efficiently and effectively

continue to sample the given design space.

For scenarios in which the feasible space was determined to be non-hypercubic and

of either significant expense or consequence to explore, the DSE-DSM methodology

advocates the use of the Set-Based Bounded Adaptive Sampling, SeBBAS, Method.

Leveraging set-based design principles, the SeBBAS method constructs Constraint

Defined Feasible Sets, CDFS, with relevant variable subsets of the design space.

Machine Learning classifiers are then employed on these CDFSs to bound the feasi-

ble regions with respect to each unique constraint. By constructing these boundings

in only the dimensions relevant to the respective CDFS, the SeBBAS approach ar-

tificially increases available sample resolution and was shown to produce superior

results for the bounding of and adaptive sampling of d-dimensional feasible design

spaces compared to a strictly global approach.

Ultimately, the utility of DSE-DSM and associated SeBBAS approach were demon-

strated for the conceptual design of a Large Twin Aisle Hybrid Wing Body aircraft

within the Environmental Design Space modeling and simulation environment. Given

a design problem in 50 dimensions in a final experiment, the DSE-DSM methodology

was able to increase the percentage of feasible designs from 72.0 to 93.8 percent when

compared to ‘business as usual’ Pseudo-Monte Carlo sampling after only a single iter-

ation. Additionally, the methodology was able to identify and rank variables relevant

to the non-hypercubic features present within the design space all without significant

additional computational expense compared to ‘business as usual’. Ultimately, this

thesis through the use of DSE-DSM and SeBBAS demonstrated the capacity for a

more timely and resource conservative approach for the conceptual design of advanced

aircraft concepts as well as other problems with similar characteristics.
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CHAPTER I

MOTIVATION

1.1 Challenges Facing The General Experimental Design
Problem

In science and engineering, experiments are performed and design problems solved as

a means to test hypotheses and discover relationships between inputs and responses.

In both of these examples, experimental parameters, or design variables DV , are

perturbed in an intelligent fashion in order to produce a set of results and then

draw conclusions. Any experiment or design problem can thus be described as the

process of varying some set of variables X, within some limits L, to produce a set of

results R from which conclusions can be drawn. In general, the experimenter seeks

to maximize the size of R in order to generate a more complete understanding of the

phenomena being observed and add statistical significance to conclusions drawn using

the data. However, the varying of experimental parameters manifests itself as a cost

to the experimenter, both due to the size of X and the number of unique variable

combinations to be considered (n). Therefore, a resource efficient way of exploring

this experimental space is naturally sought to minimize this cost.

At present, statistical methods such as Design of Experiments DOE are utilized

to intelligently distribute these unique variable combinations (designs) throughout

the experimental design space such that for a fixed experimental budget each design

will theoretically yield a high rate of return toward the understanding of the phe-

nomena/function/behavior being observed with the experimental apparatus. These

methods are powerful but derive much of their effectiveness from underlying assump-

tions made about the experimental design space. Chief among these empowering
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assumptions, and common across many DOE types, is that the experimental design

space can be generalized to a d-dimensional hypercube. That is, any design X∗

to be evaluated exists and is feasible within the continuous space bounded by the

limits L = [Llower, Lupper] ⊂ IR such that X∗i ≥ Lloweri and X∗i ≤ Lupperi for all

i = 1, 2, . . . , d = number of design variables. Furthermore, the set of variables which

comprise X are all assumed independent and thus are mutually orthogonal dimensions

of the hypervolume which bounds the experimental design space. These assumptions

along with the normalization/scaling of each dimension allow the translation of any

experimental design space to a hypercube of dimension d. This general structure

then allows for a DOE to be constructed that is agnostic to problem characteristics

yet maintains geometric similarity and thus will not artificially bias any particular

regions when linearly scaled (mapped) to the true experimental design space. These

characteristics mean a specific DOE could be constructed and mapped to any number

of experimental design spaces which share the same number of variables/degrees of

freedom.

However, there are circumstances in which the enabling assumptions used to con-

struct many DOE no longer hold. If the design variables chosen are not truly in-

dependent and exhibit any significant form of correlation then regions of the design

space may be inaccessible. Furthermore, constraints based on the physics of the ex-

periment/problem being considered may result in areas of infeasibility. Additionally,

numerical constraints associated with computer experiments, such as convergence

failures or numerical singularities, may further violate these assumptions and prevent

areas of the experimental design space from being evaluated. These conditions and

others of the like serve to transform the feasible experimental design space into what

the author terms a ’Non-Hypercubic NHC design space’, that is an experimental

design space which can not be linearly scaled to a d-dimensional hypercube without

losing information in the process.
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As the typical modus operandi for sampling experimental design spaces efficiently

relies on the construction of DOE based upon a hypercubic assumption, a natural

question that arises is what are the consequences associated with treating a space

as hypercubic and sampling it with a hypercubic design when it is in reality non-

hypercubic? The first and most obvious consequence is the loss of some portion of

the experimental budget due to design cases which are deemed infeasible or simply

do not yield a usable response. Depending on the relative expense of the evaluation

of each design this in itself may be cause for concern. In addition, even if such a

loss can be tolerated resource wise, when propagated to the end goal of the design

space exploration, serious issues may arise. The NHC space may feature variables

which are unknowingly correlated or related through constraints that restrict the

feasible design space. If regressions/surrogate models are being constructed utilizing

the design space exploration as a training set, then models fit for this space will

extrapolate over the regions made infeasible by NHC features. Because of these

potentially significant consequences, there is the need for a design space exploration

decision support methodology which acknowledges that an arbitrary design space

need not be hypercubic. Such a methodology could provide guidance for design space

exploration based on the characteristics of the problem and a more efficient path

toward knowledge of the experimental design space.

This thesis seeks such a methodology that will provide decision support for the

design space exploration for arbitrary design spaces and ultimately enable the efficient

conceptual design of advanced aircraft concepts. Such a methodology will provide hy-

percubic classification and guidance on how to best sample the design space. Should

the design space be NHC and require more advanced sampling techniques than pro-

vided by contemporary DOE, the methodology will utilize Set-based Bounded Adap-

tive Sampling to further explore and understand the design space. Ultimately the

goal of this thesis is to enhance the efficiency of design space exploration for arbitrary
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spaces and the understanding which comes as a result.

1.2 Growth and Challenges of Civil Air Transportation

The particular application motivating this investigation stems from the chalenges

presented by the growing demand and projected growth of civil air transportation.

This growth has begun to impose new requirements and reshape objectives involved

in the design of future aircraft systems. The airliners of today and the near future

differ from their predecessors in many ways, and through these differences and tech-

nological advances common motivational themes emerge. The civil aviation industry

has seen the turbojet transformed into a turbofan and transition from low-bypass to

high-bypass turbofan with projected technologies reaching for the ultra-bypass classi-

fication. Wing aspect ratios have grown from 7.1 on the Boeing 707 [56] to 11 featured

on the 787 [42].

Historically these advances have been driven by performance with aircraft striving

for superior range and payload capacity. More recently however, new legislative re-

quirements and rising fuel costs have changed the design objective function to instead

emphasize affordability and the minimization of environmental impacts. Such goals

can be readily seen in meeting transcriptions from the International Civil Aviation

Organization ICAO and in stated objectives for future aircraft systems produced by

the Federal Aviation Administration FAA and the National Aeronautics and Space

Administration NASA (see 1) [1, 2, 33]. Key to many of these goals is a reduction

in aircraft fuel burn. Not only is burning less fuel for a given route economically

advantageous for aircraft operators, but CO2 and NOX emissions scale proportionally

with fuel burn.
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Table 1: NASA Subsonic Transport System Level Metrics and Goals [33]

Technology Benefits Technology Generations

(Technology Readiness Level = 4-6)

N+1 (2015) N+2 (2020) N+3 (2025)

Noise
(cum margin rel. to Stage 4)

-32 dB -42 dB -52 dB

LTO NOx Emissions
(rel. to CAEP 6)

-60% -75% -80%

Cruise NOx Emissions
(rel. to 2005 best in class)

-55% -70% -80%

Aircraft Fuel/Energy Consumption
(rel. to 2005 best in class)

-33% -50% -60%

1.2.1 Setting a Goal: Fuel Burn Reduction

Burning less fuel is clearly desirable from both economic and environmental perspec-

tives, thus the natural question arises, how can a reduction in aircraft fuel consump-

tion be achieved? To provide insight on how to answer this question the Breguet

Range Equation (Eqn. 1) can be examined as a canonical example [84].

RNG =
V

TSFC
∗ L
D
∗ ln

(
WTO

WFINAL

)
(1)

This is the standard form of the Breguet Range Equation for a jet aircraft in

which performance, given by range RNG, is expressed as a function of vehicle system

characteristics. The thrust specific fuel consumption TSFC provides a representation

of engine performance, the lift to drag ratio L/D represents aerodynamic performance

of the vehicle and finally the weight fraction seen in the last term incorporates the

structural and weight characteristics of the system. In this one powerful equation,

many of the major objectives and trades of the field of aeronautical engineering can be

seen. This equation, when rearranged, can also provide a clear picture of the options

an aircraft designer may have when attempting to achieve a reduction in aircraft fuel

burn. To make this apparent, constituent components of the weight terms must first
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be examined as can be seen in equations 2 and 3.

WTO = WEMPTY +WPAY LOAD +WFUEL (2)

WFINAL = WTO −WFUEL = WEMPTY +WPAY LOAD (3)

In these equations the takeoff weight (WTO) of the aircraft is fully described by

three weight groups. WEMPTY represents the empty weight of the aircraft (including

any trapped fuel and necessary fluids) without any mission fuel or payload. This

term is almost entirely fixed and determined by the weight of the airframe structure,

engines and furnishings within the aircraft. WPAY LOAD refers to the mission payload,

and for a civil transport includes all passengers, crew members and luggage. Finally,

WFUEL represents the weight of the fuel to be consumed during the mission (neglecting

any reserves which can be book-kept in WPAY LOAD). Thus, after the mission has

been flown and the aircraft landed, the final weight (WFINAL) of the vehicle can

be described as the takeoff weight less the mission fuel or alternatively the sum of

the empty weight and mission payload. Rearranging equation 1 (see Eqn. 4) and

then substituting in these weight expressions for the terms in the weight fraction

will ultimately yield an expression for the weight of the mission fuel expressed as a

function of the aircraft characteristics (Eqn. 5).

WTO

WFINAL

= exp

(
RNG ∗ TSFC

V
∗ D
L

)
(4)

WFUEL = (WEMPTY +WPAY LOAD) ∗
[
exp

(
RNG ∗ TSFC

V
∗ D
L

)
− 1

]
(5)
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1.3 Achieving a Fuel Burn Reduction

In equation 5 the influence of the aircraft characteristics on the required mission

fuel can be clearly seen. Recalling the objective to minimize the fuel burned by the

aircraft for a given mission (fixed range and mission payload), it can be observed

that this can be accomplished through the minimization of the empty weight and

thrust specific fuel consumption and the maximization of the lift-to-drag ratio. This

observation is very powerful as it provides the aircraft designer three different terms

with which to operate on and improve in the specific directions to yield a desired

reduction in mission fuel burn. The next question that then naturally arises is:

how does the aircraft designer manipulate these three terms representative of vehicle

characteristics?

To answer this question, three primary avenues exist for vehicle performance im-

provement:

1. Vehicle Optimization

2. Operations Optimization

3. Technology Infusion

The first avenue of vehicle optimization encompasses activities which seek to opti-

mize existing aspects of the aircraft system through design choices. These activities

are largely performed before the aircraft has been built and often draw upon lessons

learned from earlier vehicles as well as emerging research and development. Vehicle

optimization often relies upon heavy use of modeling and simulation as the design

space is scoured for optima. Examples of vehicle optimization in action are utilizing

aerodynamic optimization for vehicle outer mold line OML and wing shape optimiza-

tion and employing structural optimization for primary wing structure design. The

second avenue, operations optimization, includes activities which seek the optimal
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procedure in which the aircraft carries out its mission. This could include anything

from minimizing taxi time through improved airport queuing to mission trajectory

optimization. Determining the optimal cruise climb schedule for an aircraft within

air traffic control requirements is an example of operations optimization. Lastly, ve-

hicle performance can be improved with the introduction of new technologies. While

the previous two approaches are typically more evolutionary in nature, with largely

incremental improvements occurring over time, the introduction of a new technology

to an aircraft system can provide revolutionary jumps in performance. This avenue

can often show great promise, but such benefits often come at the cost of increased

uncertainty and risk [59]. To mitigate this risk, technology infusion also relies heavily

on modeling and simulation to propagate technology level impacts to system level

performance [58, 60, 59].

1.3.1 Technology Development and Infusion: NASA ERA

There are many examples of technology development programs actively using this

third avenue to seek aircraft system performance improvement. Some examples of this

include the FAA Continuous Lower Energy, Emissions and Noise (CLEEN) program,

initiatives undertaken by large scale integrators (such as Boeing, UTC, Lockheed),

studies performed by national research institutes such as South West Research Insti-

tute (SWRI), and the NASA Environmentally Responsible Aviation ERA program

[104, 81]. Many of these programs are exploring immature technologies that have the

promise of a reduction in aircraft fuel burn. The Boeing ecoDemonstrator program for

example has examined an adaptive trailing edge ATE and a vertical tail augmented

with active flow control AFC among many other technologies for the very purpose

of improving aircraft performance and thus reducing fuel burn [70, 71]. The NASA

ERA program is charged with evaluating a large portfolio of emerging technologies

set to be integrated into the fleet within the N+2 time frame [104].
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In order to evaluate the potential impact and system level effects of such a large

set of immature technologies as being considered within NASA ERA, it is necessary

to rely upon physics-based modeling and simulation to estimate performance of fu-

ture vehicles. Such a task requires the incorporation of advanced models which can

capture the physics affected by such technologies and realistically simulate their ef-

fect on a sized aircraft. Furthermore, with such and expansive set of technologies and

airframe concepts considered, a huge design space with variables mapping to both

aircraft parameters and technology metrics must be explored. These items highlight

the complexity of such a design problem, yet they are not unique to this particular

example. Through a functional decomposition of the required elements of this prob-

lem, its characteristics can be listed and requirements can be described for solving

a problem of this class. This approach can provide guidance for potential pathways

which may be applicable for the conceptual design of an advanced aircraft concept

which can meet the aggressive requirements of the future.

1.4 Generalizing the Problem

While the physics-based conceptual design and analysis of an advanced civil trans-

port aircraft concept is a specific problem, it shares many characteristics with other

complex problems. By examining these characteristics, this unique problem can be

categorized among other like problems that utilize established techniques to aid in

their exploration and ultimate solution. The aircraft design problem was found to

have the following general attributes:

� Coupled multidisciplinary problem

� Computational analysis required

� Moderate fidelity analysis required to capture relevant physics

� High dimension (many design variables)
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� Numerous constraints

� Multiple constraint types

known and unknown

physical and non-physical

linear and non-linear

� Potentially correlated design variables

� Subject to multiple repeat analyses as assumptions and models are revised

1.4.1 Categorization: Computationally Expensive

As it is prohibitive to explore this problem with physical experimentation, and his-

torical data does not exist for advanced concepts with emerging technologies, this

problem needs to be explored with computational analysis. Furthermore, due to

the coupled nature of the physical disciplines governing the design of an advanced

aircraft concept, at least moderate fidelity methods should be utilized to ensure all

relevant physics are captured. In addition, as is common with many design problems

attempting to explore a large design space, the problem is inherently one of high di-

mensionality. Thus, to explore a new design space of high dimension, while requiring

moderate fidelity methods, makes the proposed problem likely expensive in terms of

the time expenditure of computational resource allocation.

1.4.2 Categorization: Non-Hypercubic Design Space

The nature of the problem also dictates that many constraints can be expected to

subdivide the design space, and that the constraints themselves may be varied in

nature. Certain constraints will be tied to aerodynamic requirements, while others

focus on propulsive considerations, others still, will likely emerge due to the compli-

cated interactions between the disciplines. Some constraints may not even be physical
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and arise due to the nature of the computational models and assumptions used. As

computational models are emulations of true physics, they are by nature inexact and

thus not applicable for every regime or range and combination of variables considered.

Additionally, many design variables to be considered because of their relevance to air-

craft design may not be truly independent. This characteristic further changes the

shape of the feasible design space as variable correlations lead to trends and biasing in

the feasible design space. These constraints and variable correlations have the effect

of distorting the feasible design space such that it is no longer a regular hypercube

(example shown in Fig 1). That is, the feasible design space is not simply defined

by upper and lower variable bounds in each of the d-dimensions, but rather dictated

by a combination of these bounds, active constraints and variable inter-dependencies.

In this instance, constructing a bounding of the design space which determines the

boundaries of this irregular feasible space may assist in making the exploration of the

problem more efficient.

Figure 1: Regular Hypercubic Design Space vs. a Non-Hypercubic Space Defined
by Numerous Non-linear Constraints from a 2-D Energy Based Constraint Analysis
[48, 62]

11



www.manaraa.com

1.4.3 Categorization: Repeated Exploration

As the design of advanced aircraft concepts often model technology still in devel-

opmental phases, many assumptions must be made about performance and require-

ments. Technology applications and performance impacts will be updated through the

efforts of technology development programs, and based on this new data, the output

of computational models representing its behavior will evolve as well. In response to

these updates, feasible regions of the design space may shift and previous designs may

lose their optimality. To address this fluidity, the design space will require revisiting

as computational models and constraints are updated.

1.4.4 Problem Classification

All the aforementioned attributes can be used to provide a classification for this

particular problem. The conceptual design problem of an advanced aircraft concept

belongs in a class of problems which are computationally expensive, expected to

have design spaces which are non-hypercubic and repeatedly explored. This

classification leads to an Thesis Research Objective which drives the efforts of this

thesis:

1.5 Thesis Research Objective

The objective of this thesis is to search for, and if necessary create, a methodology

that will facilitate conceptual design and analysis of problems which are computation-

ally expensive, non-hypercubic in nature and likely to be revisited multiple times. In

order to accomplish this goal, this thesis will strive to illustrate that current methods

are lacking in their ability to efficiently provide accurate representations of the feasi-

ble design space for problems of this class. Then, to bridge this gap, a methodology

is proposed which will hopefully provide a greatly improved representation and un-

derstanding of the design space compared to those generated using existing methods

12
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with similar computational resources. This superior design space representation is

expected to allow for the production of higher quality regressions/surrogates, more

efficient optimization and future Design Space Exploration DSE, and a greater un-

derstanding and capacity to visualize constraints, and relationships between variables

and computational model limits. The methodology will then be applied and tested

against competing current methods on the problem of interest: the design space ex-

ploration for the conceptual design of a Large Twin Aisle LTA Hybrid Wing Body

HWB passenger transport aircraft. This thesis will then suggest that the methodol-

ogy used to make this analysis realizable can be generalized to problems of a similar

class and thus has wide applicability for expensive and complex problems.

1.5.1 Overarching Research Question and Corollary

With this objective in mind, an overarching research question can be formulated

which highlights the critical investigations proposed in this thesis. This question will

be revisited throughout this work to provide guidance and aid in the derivation of

lower level research questions and hypotheses.

Overarching Research Question ORQ:

What methodology, consisting of what elements, should be used to pro-

vide decision support for the exploration of design spaces and solution

of problems which are computationally expensive, non-hypercubic

and must be repeatedly explored?

Corollary to the Overarching Research Question CORQ:

How should such a methodology be applied for the conceptual design of

an advanced civil transport aircraft?

13
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1.5.2 Statement of the Overarching Research Objective

To begin to answer these questions, the thesis research objective is reformulated in a

more focused and succinct way to better guide the investigation.

Overarching Research Objective ORO:

This thesis seeks a general methodology which addresses the gaps in cur-

rent practices for conceptual design and analysis of problems which are

computationally expensive, non-hypercubic, and subject to re-visitation.

This new methodology should be able to classify these designs spaces as

non-hypercubic and then produce a resource efficient representation or

bounding of the feasible design space such that the characteristics of

design space can be more easily understood. This design space knowledge

will enable surrogate generation, optimization, visualization and efficient

future exploration of the design space.

In order to meet this research objective, motivating questions (which are subsets of

the overarching research question and corollary) will be posed throughout this thesis

to define certain aspects of the problem and determine what is needed to construct

a methodology which enables its efficient solution. These questions will be directed

at determining the appropriate elements of the methodology used to classify and

ultimately bound the design space to enable the conceptual design and analysis of

the problem of interest. When applicable, these questions will be answered through

literature review, observation and inference. However, when literature or existing

techniques prove insufficient to answer particular research questions, hypotheses must

be generated and ultimately tested through experimentation to provide answers.
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CHAPTER II

BACKGROUND

2.1 Understanding the Challenges of the Problem

As mentioned in the overarching research question, the general problem of conceptual

design of advanced aircraft concepts was classified as computationally expensive,

non-hypercubic and subject to repeated exploration. These characteristics were

explored each in detail to understand their potential causes and solutions. Ultimately

research question were posed which would drive experimentation to address these

issues within the methodology being presented.

2.1.1 Computationally Expensive

The design problem of interest for this thesis work was deemed computationally ex-

pensive, but what makes this so? As posited in the previous section, the computa-

tion model/tool characteristics necessary to enable a multidisciplinary physics-based

analysis which adequately captures the relevant information for each of the disciplines

within the conceptual design phase is part of the equation, but model choice alone

does not make a problem expensive. So to address this inquiry another motivating

question can be formally posed:

Motivating Question 1 (MQ1):

What makes the physics-based computational design and analysis of an

advanced aircraft concept computationally expensive?

The analysis of an advanced aircraft design space is both multidisciplinary and

highly combinatorial [93], and thus the determination of the feasible space is often a re-

source intensive task. Even at the conceptual stage, to generate a realistic design, the
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integration of aerodynamics, propulsion and structural (largely weight distribution)

analyses must be performed and in an iterative nature, such that a feasible vehicle

may be converged upon. If an advanced concept (likely using emerging technologies)

is to be considered, historical data cannot be relied upon to provide accurate esti-

mates as surrogates for these analyses. Additionally, as physical testing is infeasible

at this stage of design, due to the sheer number of design alternatives to be considered

(specified by a unique combination of design variables), physics-based computational

modeling is often employed. In order to explore the design space thoroughly and

accommodate requirements and objective functions, it is often desired that the com-

putational models employed be parametric in nature. A parametric model enables

rapid and semi-autonomous design space exploration, however, even with the use of

such a model, there is a limit to what may be practically examined in search of the

feasible design space. This limit exists due to the non-negligible computational re-

sources required to evaluate these integrated models in addition to the size of the

design space being explored. To provide an appreciation for the dimensionality of

this problem, a example list of a small subset of typical conceptual design variables

utilized within such models is presented:

1. Wing Aspect Ratio

2. Wing Area

3. Induced Drag Factors

4. Subsonic Drag Factors

5. Wing Transition Reynolds Numbers

6. Thrust to Weight Ratio (prop)

7. Takeoff Thrust

8. Fan Pressure Ratio

9. Max Turbine Inlet Temperature

10. Low Pressure Compressor Pressure

Ratio

11. High Pressure Compressor Pressure

Ratio

12. Customer Bleed Air Required

13. Combustor Efficiency
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14. Wing Weight Factors

15. Fuselage Weight Factors

16. Engine Weight Factors

17. Design Payload Weight

18. Design Altitude

19. Design Mach Number

20. Design Gross Weight

Examining this list and further realizing that many of the items could be described

as summary parameters which may be decomposed in detail by any number of lower

level design variables, it can be observed that this problem is quickly becoming one

of high dimensionality, and with the large ranges for each of these variables to be

considered, one which suffers from the ‘curse of dimensionality’ [13]. In some ex-

treme cases, upwards of 50 to thousands of design variables may be present just for

some design problems, particularly those involving structural design and/or aeroelas-

tic effects [11, 100, 20, 37, 72]. In addition, each unique design must be iteratively

analyzed (using all relevant physics-based modules) in the multidisciplinary aircraft

design environment and converged. Based upon these conditions, a notional required

computational expenditure to exhaustively explore a given design space can be esti-

mated using the following equation:

Computational Time Required = dFL ∗ IPC ∗ TPI (6)

Where d is the number of design variables (or factors), FL is the number of levels

or settings per factor, IPC is the average number of iterations required to converge

the main design loop (which contains all the discipline based modules) and TPI is

the average time per iteration. Putting numbers to these values can provide an

estimate of the computational expenditure required to evaluate each unique design

(i.e. conduct a brute force exploration of the design space). For d, an approximate

value is 20 using the above list of design variables for reference (this is a conservative

estimate for most practical design problems). In order to capture any non-linear
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behavior in responses, at least three factor levels should be evaluated for each design

variable, thus FL = 3. The number of average iterations for vehicle sizing convergence

per case can be optimistically estimated at two. Lastly, based upon the author’s

experience utilizing a conceptual aircraft design computational environment EDS, a

conservative estimate for the time per iteration can be approximated at 5 minutes on

an individual workstation (Benchmark: Intel i7 processor, 8 GB RAM, Windows 10

64bit). Substituting these numbers into equation 6 yields the following estimate for

computational expenditure expressed in CPU time:

Computational Time Required = 203 ∗ 2 ∗ 5 = 80, 000 minutes = 55.55 days (7)

While many assumptions were made to arrive at this figure, it can clearly be seen

from this example that attempting to solve this problem in this particular fashion

is appreciably computationally expensive, and likely prohibitively so unless one has

the use of significant distributed computing resources at their disposal. Referring to

equation 6 and observing the output when appropriate numerical substitutions are

made (Eqn. 7) allows MQ1 to be answered:

Answer to MQ1:

The physics-based computational design and analysis of an advanced air-

craft concept is made computationally expensive by a combination of fac-

tors. These factors include the high dimensionality of the design space,

the design variable ranges considered, the iterations required for aircraft

sizing convergence and the individual design case run time using state-of-

the-art multidisciplinary, physics-based modeling and simulation environ-

ments for the conceptual design of advanced aircraft concepts.

With the factors identified that contribute the computational expense of the prob-

lem, and reasonable and representative assumptions made for the values of all the
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variables in equation 6, it can be seen such a problem may likely be unmanageable if

approached and sampled unintelligently. Brute force exploration of the design space is

very likely prohibitive. Inefficient design space exploration which results in the loss or

failure of an appreciable percentage of the total number of designs considered would

constitute a intolerable waste of computational resources, particularly if regression/-

surrogate models are to be constructed from this data. Ultimately, should features

exist within the design space which deny or make infeasible significant regions, design

space exploration for such a problem utilizing business as usual DOE techniques such

as LHS or PMC sampling may likely be found lacking.

2.1.2 Non-Hypercubic Design Space

With the expense of the physics-based computational design and analysis of ad-

vanced aircraft concepts illustrated, the next challenge to be illuminated is the non-

hypercubic nature of the feasible design space. First, it is important to reiterate what

is meant by the term ‘hypercubic’ and ultimately a non-hypercubic design space. ”A

hypercube is the generalization of a 3-cube to n dimensions” [105]. It is a closed,

bounded, convex geometry which encompasses the space between limits specified by

parallel lines in each dimension which are perpendicular and of the same length to

limits in all other dimensions. Figure 2 illustrates hypercubes in dimensions ranging

from d = 1 to d = 3.

Mathematically the d-dimensional hypercube can be described as the bounded

space which consists of the points:

{(x1, x2, . . . , xd) ⊂ IRd : xiLower ≤ xi ≤ xiUpper} (8)

Where for the unit hypercube: [xiLower, xiUpper] = [0, 1].

When speaking of design spaces, hypercubes are a very useful construct. When
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Figure 2: Examples of 1-D, 2-D and 3-D Hypecubes: Line, Square and 3-Cube
Respectively

assembling a design space, design variables are assigned separate and mutually or-

thogonal dimensions. To bound the design problem, each of these design variables

is given a range over which it may be varied, defined by lower and upper limits on

its value([xiLower, xiUpper]). When the d-dimensional orthogonal basis created by the

d design variables is bounded by each of the variables’ respective limits, this creates

a hypervolume in d dimensions. Finally, if all dimensions are now normalized, this

hypervolume reduces to an d-dimensional hypercube. Thus, any traditional design

space which has independent variables that range continuously from lower limits to

upper limits can be fully described by a hypercube of dimension d, where d is the

number of design variables. This conclusion is important because if any unique d-

dimensional design space can be reduced to a hypercube of dimension d, then any

technique which draws samples from the space bounded by a d-dimensional hyper-

cube, when properly scaled, can be used to draw samples in a similar fashion from

the design space of interest. In this way, a sampling technique need not be developed

for a particular problem, only for a generalized space, the d-dimensional hypercube.

The distinction of a hypercubic design space is important as many numerical and

statistical sampling techniques (which were discussed in detail in the Background)
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have been developed on the basis of sampling from this fundamental structure. Monte

Carlo sampling, Taguchi methods and traditional Design of Experiments techniques

all construct their set of designs to be sampled utilizing the full volume of the d-

dimensional hypercube to which the design space for a particular problem is gen-

eralized [98, 22, 6]. These methods work well and will produce feasible results if

the feasible design space is indeed hypercubic. However, what if the design space

or rather the feasible portion of the design space is non-hypercubic? If this is the

case, then some of the designs generated by a hypercubic-based sampling method will

likely be sampling design points which are infeasible, that is they do not satisfy some

constraint, or for whatever reason do not produce a successful result (code crash,

failed convergence, numerical error, garbage result, etc.). As these designs are infea-

sible and/or failures, the computational effort expended in evaluating them can be

considered wasted due to the absence of successful output. Now if the feasible design

space is only a small perturbation from a hypercubic design space, or the analysis is

rather computationally inexpensive these hypercubic sampling methods can still be

used and a certain percentage of failures must be tolerated. But what if the feasible

design space is a significant departure from a hypercubic space and the analysis of

that space is computationally expensive. In this case, it stands to reason that hy-

percubic sampling methods will waste large percentages of their computational effort

evaluating infeasible or unsuccessful designs. This result suggests that perhaps a dif-

ferent sampling method should be used, one that can recognize the feasible space is

non-hypercubic and thus sample it more intelligently.

The physics-based computational design and analysis of an advanced aircraft con-

cept has been established to be a computationally expensive problem, but is it non-

hypercubic, and if so, how could that be determined, i.e. what are the characteristics

of a non-hypercubic feasible design space? Expressing these concern more formally

produces a set of research questions:
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Motivating Question 2.1 (MQ2.1):

What characteristics make a feasible design space non-hypercubic?

Motivating Question 2.2 (MQ2.2):

Is the feasible design space for the physics-based computational design

and analysis of an advanced aircraft concept non-hypercubic?

As the bounds of a hypercubic design space are defined strictly by upper and

lower variable limits the design space is subject only to 2d active linear inequality

or side constraints. However, the side constraints imposed to limit the range of

the design variables considered are often not the only constraints applicable to a

particular problem. Other constraints exist in the form of performance constraints,

physical or kinematic constraints and non-physical constraints which arise due to the

limitations of computational models. These constraints serve to limit and restrict the

feasible design space, and while certain constraints like those related to performance

may artificially erect boundaries in the design space, others demarcate regions of the

design space which should not, or simply cannot be explored. For example, consider

the design of a wing spar for a common cantilever wing and let the height of this

wing spar be a design variable which can be increased to increase the bending rigidity

of the wing. If the airfoil sections of the wing are also treated as design variables

then there arises a physical constraint that limits the height of the wing spar to no

more than the thickness allowed by the airfoil sections chosen. Unlike performance

constraints, this constraint is unable to be compromised or perturbed as a design in

which the wing spar protrudes from the wing OML is not only highly undesirable,

but also physically impossible. Such a constraint could be represented as an equation

of the form:

hspar ≤
(
t

c

)
airfoil

∗ c (9)
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Equation 9 is a linear inequality constraint which is not parallel to any side con-

straints defining the design space limits and thus the boundaries of the hypercube.

Because of this it eliminates a portion of the design space from consideration and in

doing so transforms the feasible design space from a shape that can be generalized

as a 2-D hypercube to a space that is non-hypercubic. Figure 3 illustrates how the

feasible design space is impacted due to this physical constraint.

Figure 3: Non-Hypercubic Feasible Design Space Resulting from an Active Linear
Constraint that is Non-Parallel to Design Space Side Constraints

Another example of the design space being transformed from a hypercube to a

non-hypercubic feasible space through the application of a constraint can be seen

when examining the limitations of a particular Vortex-Lattice analysis code called

Athena Vortex Lattice AV L. While a very fast and flexible tool, like all other com-

putational codes, it is not without limitations [19]. One particular limitation arises

when considering flight conditions at high Mach numbers. Because AVL uses the
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classical Prandtl-Glauert PG transformation to correct for compressibility effects,

it is limited by the range of validity of this model. The PG transformation pro-

duces reasonable results up to a free stream Mach number of approximately 0.6,

after which it breaks down as critical Mach numbers are approached in which the

beginnings of shock formation can be observed on typical wing sections [5]. However,

”for swept-wing configurations, the validity of the PG model is best judged using the

wing-perpendicular Mach number” [19]. Where the wing-perpendicular mach number

which the wing ’sees’ can be calculated as:

M⊥ = M∞ ∗ cos(Λ) (10)

Where M∞ is the free stream Mach number and Λ is the sweep angle of the

wing. Since for a swept wing, the PG correction is limited by this wing-perpendicular

mach number an interesting non-linear constraint which is a function of both free

stream mach number and wing sweep arises to describe the region of validity of

the computational model. Equation 11 provides an expression for this non-physical

constraint (induced by computational model limitations) and when applied to the

design space (considering variables Mach number and sweep angle) produces a non-

hypercubic feasible space as seen in figure 4.

M∞ ≤
0.6

cos(Λ)
(11)

Based on these two examples an observation can be made about the nature of

when a non-hypercubic design space can be expected to be present for a particular

problem. As was seen with certain constraints which deny regions of the feasible space

within the region defined by the variable limits, the feasible design space is altered

from that of a regular hypercube. It is important to note that these constraints

may be linear or non-linear in nature, but if linear must not be parallel to existing

side constraints defined by variable limits. If parallel, the design variable ranges can
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Figure 4: Non-Hypercubic Feasible Design Space Resulting from an Active Non-
Linear Constraint

simply be redefined and the hypercubic shape preserved as a subset of the original

design space. Furthermore, it is important that these constraints be active, i.e. exist

within the bounds of the hypercubic design space, because if the variable ranges are

restricted such that these constraints are no longer encountered, the space will likely

remain hypercubic but sacrifice a significant amount of volume which was originally

intended to be explored.

Observation 2.1.1: Regarding MQ2.1:

If one or more active non-linear constraints or active linear constraints

non-parallel to existing design space boundaries are present in the design

problem, then the resulting feasible design space will be non-hypercubic.
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Caveat: Although performance related constraints contribute to the

definition of the feasible design space, they may be somewhat arbitrary or

variable in nature. When constructing regressions or surrogate models to

represent a design space it may be beneficial to temporarily ignore these

constraints, allowing the regressions constructed to remain valid and not

subject to extrapolation should any performance constraint be perturbed.

Now, using the same logic which led to the previous observation, a similar result

can emerge if the design space features significantly correlated design variables. In

the traditional sense, design variables are intended to be defined such that they are

entirely independent. If this assumption is true then neglecting the effects of all con-

straints and computational method limitations, an individual variable should be able

to produce feasible designs when it assumes values throughout its range of considera-

tion irrespective of the values of any of the other variables. However, if a variable at

a particular value requires other variables to lie within a certain range (smaller than

that given by the design space limits) in order to produce a feasible design, it can

be said that these variables are correlated. If variables trend together then it follows

that the cross-section of the design space over which they span will illustrate a similar

trend. Finally, if an observable trend exists in the design space, then designs which

do not obey this correlation yet exist within the bounds defined by the hypercube

may be infeasible. If this is the case, then it can be hypothesized that sufficiently

correlated design variables can cause a feasible design space to be non-hypercubic. As

an example, consider two design variables which may, for computational simulation

purposes, be desirable to be varied independently: wing taper and wing twist distri-

bution. Wing taper is utilized to help shape the wing lift distribution and provide

volumetric and structural advantages. It is desirable to have a low taper ratio to

minimize wing weight and increase fuel volume for a given aspect ratio, however too

much taper can result in the increased risk of wing tip stall [12, 78]. Wing twist is
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typically used to achieve favorable stall characteristics such that during stall, flow

remains attached over portions of the wing which contain control surfaces, ensuring

control is maintained [12]. Changing the twist of a wing changes the local incidence

and thus local effective angle of attack or a given wing section. Therefore in practice,

to achieve similar stall characteristics, a wing with a lower taper ratio will require

more washout (negative twist) at the wing tip than a wing with a less taper (higher

taper ratio). Thus these variables although perhaps considered independent for com-

putational simulation purposes are truly correlated and some regions of the design

space will be denied, or made infeasible due to this correlation once these practical

considerations are enforced. This chain of logic leads to the following observation:

Observation 2.1.2: Regarding MQ2.1:

If significant variable correlation exists between design variables over the

ranges in which they are considered in the design problem, then the fea-

sible design space is non-hypercubic.

Due to the nature of the specific problem considered, i.e. its high-dimensionality

and coupled multidisciplinary nature, it is expected that this design problem will

feature active linear and non-linear constraints as well as correlated design variables

which all contribute to restriction of the feasible design space. However, it is not

sufficient to simply assume a feasible design space will be non-hypercubic and thus

potentially inefficiently explored by hypercubic based design space exploration tech-

niques. Furthermore, knowledge about the characteristics or properties of the design

space may not always be known a-priori (for example in the use of a ‘black box’ model

or code). Thus it is highly desirable to have a means of hypercubic classification for

a given design space, which, given only an initial design space sample output, could

determine whether the feasible space was hypercubic or not. In regard to discovering

a method suitable for hypercubic classification a formal question is posed to help

guide experimentation:
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Research Question 1 (RQ1):

How can the design space be classified as Hypercubic (HC) or Non-Hypercubic

(NHC)?

2.1.3 Repeatedly Explored

Again revisiting the motivation and the overarching research question, the physics-

based computational design and analysis of an advanced aircraft concept was also

characterized by requiring repeated exploration. But why is this so, and what are the

implications of this repeated exploration?

Motivating Question 3 (MQ3):

What makes the physics-based computational design and analysis of an

advanced aircraft concept require repeated exploration and what conse-

quences arise due to this requirement?

As posited by the previous section, active constraints which constrain the feasible

design space can be expected for this and like problems. These constraints can form

the boundaries of the feasible design space and make it non-hypercubic. However,

some constraints, particularly those associated with performance, may not be static

throughout the development of the technology and the associated aircraft system with

which it is integrated. Complications arise due to the inherent variability of these

constraints. This variability can be a product of factors such as: customer prefer-

ences, competitor actions, new regulations, volatility in fuel prices, cost overruns and

schedule slippages. Combining these factors with the typical time-scale of large air-

craft development programs often results in a final system that is noticeably different

from what was originally envisioned [61]. This translates to a feasible design space

in flux throughout the design process where the shape, characteristics and preferred

regions of the design space may change drastically with time. Because of this, it is

insufficient to explore and analyze such a design problem only once. As requirements
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change, development progress is made and assumptions updated, so must the design

space reflect this evolution.

Revisiting the design problem multiple times to address the evolution of assump-

tions and constraints comes at a cost. Specifically, analyses must be rerun to ensure

changes are propagated. If the design space is revisited and re-explored in the same

fashion for every update, it is very possible that regions of infeasibility will be con-

tinuously re-evaluated and the same waste of computational resources repeated again

and again. Furthermore, the initial computational cost required to explore the design

space is simply multiplied by the total number of times it must be explored. Form

many problems, this cost may simply be tolerated, but for problems which are al-

ready computationally expensive, such a cost may not be acceptable. Furthermore,

for problems which are non-hypercubic in nature, initial exploration will yield infor-

mation about the characteristics of the feasible design space which can be used for

future revisits (or to isolate and identify errors within the environment). Although

some of the constraints and assumptions may change from iteration to iteration, it is

likely that many will remain the same, thus in this situation it is beneficial to look

to the past before going forward, to use the knowledge gained from previous explo-

rations of the design space to guide new efforts. An analogy can be drawn by looking

at the history of exploration of our planet. Explorers of old used cartography, the

practice of map making, to record their discoveries for posterity and allow areas to be

revisited with more knowledge each time. It is important to note that although these

maps were by no means perfect, they served as a useful guide for future exploration

in which they were revised and refined. Learning from this analogy, for a design

problem which is both computationally expensive and non-hypercubic in nature, it is

likely beneficial, i.e. will conserve computational effort, to generate an accurate (i.e.

with enough resolution) map or bounding of the feasible design space to guide future

exploration.
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Observation 3: Regarding MQ3:

The repeated exploration of the design space for an advanced aircraft

concept is required due to evolving constraints and updated assumptions

associated with technology development. This repeated exploration re-

sults in an increase in necessary computational resource expenditure and

the value of knowledge regarding the design space.

Given this observation regarding the characteristics of the problem and the as-

sumption that some means of leveraging past knowledge about the design space will

be helpful in its future exploration a formal research question regarding design space

boundings is formulated:

Research Question 2: (RQ2):

Will an appropriate bounding constructed for a non-hypercubic design

space generally provide an advantage for future exploration of the space?

2.2 Relevant Research Thrusts

As the overarching research objective of this work was to identify a methodology to

enable general design space exploration for problems which feature the aforementioned

challenges, three primary research areas were identified. These research areas are as

follows:

� Design Space Exploration

� Design Space Classification

� Application: Conceptual Aircraft Design

For each of these three research areas, criteria were identified which were important to

the construction of a decision support methodology for design space exploration. Ad-

ditionally, specific alternatives identified through research were enumerated for these
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criteria. This decomposition of research areas can be viewed in the morphological

matrix presented in Table 2. This matrix served as a guide for the major thrusts of

research within this work. In order to elicit the methodology sought by the ORO,

alternatives were evaluated through literature review or experimentation for each of

the necessary criteria.

2.2.1 Design Space Exploration

All design problems which involve computational analysis and do not have a direct or

analytic solution must employ some form of numerical sampling that dictates which

designs are evaluated and in what order. Design Space Exploration DSE is the

systematic process of evaluating design alternatives spread throughout the design

space [107]. There are many techniques that exist for sampling the design space and

performing DSE. Selection of an appropriate technique is dependent on a number of

factors such as [6, 68]:

� DSE objective:

Compare the relative impact of design variables

Screen to determine most important main effects

Fit regressions or surrogate models

Determine an optimum design

Extract information for future DSE

� Design space characteristics (if known)

Number of design variables/factors

Continuous or discrete

Constrained (besides variable limits) or unconstrained

Correlation between design variables
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Behavior at design space extremes

� Computational resource budget available

� Computational expense of design evaluation (function call)

� Amount of global exploration desired

� Batch execution of sample set desired

Certain DSE methods are more tailored to certain objectives and sampling design

spaces with certain characteristics. By examining the existing techniques for DSE

and keeping in mind the characteristics of the particular problem to be examined,

the most suited technique for performing DSE for the physics-based computational

design and analysis of an advanced aircraft concept can be identified.

Motivating Question 4 (MQ4):

For a problem which can be classified as computationally expensive, hav-

ing a non-hypercubic design space and requiring repeated exploration,

what are appropriate techniques for performing Design Space Exploration

(DSE)?

2.2.1.1 Brute Force Sampling

Brute force or ‘one variable at a time’ sampling is conceptually the simplest technique

for DSE. This method simply involves trying every combination of variables possible

by changing the value of only one design variable at a time. This exhaustive form of

DSE is: very simple to implement, applicable for all forms of design spaces whether

continuous, discrete, constrained or unconstrained, excellent at global exploration

and identification of optimum designs and will provide a great amount of data to

which quality regressions can be fit. This applicability comes at a great cost however,

as each design explicitly enumerated must be evaluated, the computational cost is
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always proportional to the number of designs which can be considered. For practical

problems this expense is most often unacceptable, and this technique is often only

adopted when the experimenter is not limited by computational resources or the ease

of implementation of this method outweighs the all other costs.

2.2.1.2 Optimization Based Sampling

Optimization based sampling is an umbrella given to all sampling techniques which

rely on some objective function or design fitness to determine where the next samples

in the space should occur. This set of DSE techniques are primarily concerned with

finding a design (or set of designs) which is an optimum with regard to some prede-

fined metrics or objective function. Optimization based sampling methods come in

many types and can be either deterministic or stochastic in nature and often feature

means of dealing with various types of constraints (however, these constraints must

often be explicitly defined). Some examples of optimizer based sampling algorithms

are: Grid Search, Steepest Descent, Powell’s Method, Newton’s Method, Genetic Al-

gorithms, Simulated Annealing and Particle Swarm to name a few [101]. Since the

objective of these methods is to efficiently find optimum designs, that is primarily

where their strengths lie with regard to DSE. Depending on the method, they range

from moderate to significant difficulty in implementation and while typically pro-

viding excellent exploration in neighborhoods around optimum designs (very good at

exploitation) these methods rarely provide thorough global exploration. Even in cases

when large portions of the design space are to be explored, the density of sampling

is typically extremely non-uniform and concentrated near local optima. Because of

this, global characteristics of the design space may be poorly understood as focus is

placed near the local optima. Furthemore, using this method of sampling to then

construct regressions results in models which are heavily biased/trained in regions of

the design space near optima with poor representation of other areas more sparsely
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sampled. Lastly, as optimizer based sampling is dependent on an objective function

to explore the design space and discover optima, should this function change or con-

straints shift over the course of the design process, the best designs which were so

laboriously sought and exploited may lose their optimality.

2.2.1.3 Pseudo-Random Sampling

Pseudo-Random Sampling or Pseudo Monte Carlo PMC is derived from traditional

Monte Carlo Sampling and is essentially the numerical implementation of a pseudo-

randomized design point [15]. “The prefix pseudo- refers to the use of a pseudo-

random number generation algorithm that is intended to mimic a truly random nat-

ural process” [29]. In this method of DSE, each design is specified by design variable

values which take on a pseudo-random value selected in between their lower and upper

specified ranges. Sampling in this fashion is advantageous because given a random

number generator, this method is very easy to implement. Furthermore, given enough

samples, theoretically there is no biasing toward any region of the design space as ev-

ery design point is just as likely (baring numerical errors) to be selected as any other.

This trait makes this sampling method particularly well suited for cases in which

little to nothing is known about the design space. However, in practice, if not enough

samples are used to explore the design space, the distribution of design points may

not be representative of true uniform distributions on each design variable. Because

of the random nature of the selection of designs there is no formal structure or logic

which governs how designs are placed in relation to another. For this reason, this

sampling method makes it more difficult to extract sensitivities to any one variable

as well as evaluate specific locations of interest in the design space, such as extremes.

2.2.1.4 Traditional Design of Experiments

”Design of Experiments was developed in the early 1920s by Sir Ronald Fisher at the

Rothamsted Agricultural Field Research Station in London, England” [6]. Structured
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statistical sampling techniques developed to optimize the information return from a

limited expenditure of experimental resources, DOE have often been employed to

efficiently extract information from large combinatorial spaces [22]. Many forms of

DOE exist, ranging from the full and fractional factorial orthogonal designs to varied

space filling designs [29, 15, 41, 82, 86, 91]. Some designs are intended to better

capture behavior of the problem near the extremes of the design space, others closer

to the interior. Some designs require a large or fixed number of samples while other

specialize in utilizing relatively small or sample sets or arbitrary size [80, 102, 90].

Should some information about the problem be known, the various types of DOE allow

the experimentalist many options in choosing the most appropriate DOE. Because

of their structured nature, DOE are very capable in screening for design variables

which contribute most the variability of responses. Furthermore, depending on their

structure, DOE can allow statistical inferences to be made about design spaces and

the variables they are composed of with relatively few samples. Additionally, DOE are

often utilized to sample the design space in order to produce regressions or surrogate

models for the response space. Certain DOE, such as Latin Hypercube Sampling

LHS, have been shown to be very adept at providing a stratified and relatively

unbiased sampling of the design space with a limited number of design cases enabling

the production of regressions often superior to those obtained through PMC sampling

[97]. DOE do have limitations however, and unlike PMC some designs can take

significant computational expense to compute (determine where designs should be

placed) [86]. Furthermore, traditional DOE are constructed under the assumption

that the design space is a regular hypercube, should this assumption not be true,

sample points may be placed in regions that are infeasible or will result in failure,

and if so, certain desired properties like unbiased sampling or orthogonality can be

lost.
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Consequences of Violating Orthogonality Many traditional DOE utilize or-

thogonal structures in their distribution of designs throughout the design space. “An

experimental design is orthogonal if the effects of any factor balance out (sum to zero)

across the effects of the other factors” [69]. Orthogonality is a desirable property for

experimental design as it allows for effects to be isolated and confounding between

factors to be eliminated. With an orthogonal data set, techniques like the Generalized

Method of Moments and Analysis of Variance ANOV A can be used for parameter

estimation and sensitivity analyses respectively. Additionally some regression tech-

niques, such as Response Surface Methodology RSM , rely on orthogonal data sets to

accurately estimate regression coefficients. Many DOE are not orthogonal however,

either due to non-orthogonal construction (PMC, LHS) or failed data points which

alter the structure of the DOE by denying any usable response values. The loss of

orthogonality prevents proper the use of the aforementioned techniques and makes

drawing statistical conclusion about the design space more difficult with a given set

of data. However, depending on the ultimate goal of the design space exploration ef-

fort, the violation of orthogonality may not be all that consequential. “When setting

up a computer experiment, it has become a standard practice to select the inputs

spread out uniformly across the available space” [82]. Space filling designs are com-

monly considered most appropriate for computer experimentation and yet many are

non-orthogonal. Some of the reasons for this are that space filling designs are able

to better distribute cases throughout the space and are often not restricted to the

specific case requirements orthogonal designs need to remain balanced. Furthermore,

advanced regression techniques such as artificial neural networks ANN can achieve

high accuracy for complex responses without requiring an orthogonal input space.

For these reasons and the inherent fragility of orthogonal designs when subjected to

a non-hypercubic design space, no orthogonal DOE will be utilized to examine design

spaces within this work.

37



www.manaraa.com

2.2.1.5 Adaptive Sampling

Adaptive sampling is an iterative form of sampling the design space. Unlike tradi-

tional DOE, or PMC, instead of seeding the design space with all its computational

resources (available cases) at once, adaptive sampling uses information from previ-

ously evaluated design points to inform where the next set of sample points are to

be placed [90]. In this way, adaptive sampling is somewhat similar to optimization

based sampling, yet it differs in that it is not necessarily concerned with locating

optimum values, but rather allocating samples to regions of interest (whatever that

interest may be). Through iterative sampling of the design space, a feedback loop

is created which allows for the more intelligent placement of samples. This feedback

loop is especially useful if certain regions of the design space are infeasible as these

regions can be avoided in future sampling iterations.

As the global feasible region for a general design space may not be hypercubic

in nature it is prudent to perform adaptive sampling for DSE if possible. In this

way, computational resources can be more efficiently allocated through multiple iter-

ations to feasible regions as the boundaries of the design space become understood.

Additionally, resources can be utilized to either explore or exploit knowledge gained

through previous iterations of DSE allowing for the refinement of boundaries within

the space as well as an increase in sample density in regions of interest. For these

reasons, adaptive sampling was identified as the DSE technique most appropriate for

the decision support methodology sought within this work.

2.2.2 Design Space Classification and Bounding

As suggested in the overarching research objective, an accurate bounding/represen-

tation for the design space is desired to enable the efficient analysis of problems like

the physics-based computational design of an advanced aircraft concept. Based on
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the aforementioned characteristics of this class of problems, a bounding of the de-

sign space, based on the classification of sample design cases evaluated throughout

the space for their feasibility with regard to constraints and computational method

limitations will likely prove helpful in efficiently addressing such problems. If this

assumption is accepted, the questions still remain of how should designs be classified

and this bounding be created? Posed more formally:

Motivating Question (MQ5):

For a problem which can be classified as computationally expensive, hav-

ing a non-hypercubic design space and requiring repeated exploration,

what are appropriate techniques for classifying and bounding the feasible

design space?

Motivating Question (MQ5.1):

What is a suitable method for performing hypercubic classification for a

general design space?

Motivating Question (MQ5.2):

How should individual designs be classified to best enable the boundings

of the feasible design space?

Motivating Question (MQ5.3):

How should the boundings of the feasible design space be constructed?

’

2.2.2.1 Hypercubic Classification: Mutual Information

Motivated by RQ1 and MQ5.1 and the desire to find a robust method to provide

hypercubic classification for arbitrary design spaces, multiple means of detecting fea-

tures within a general design space were investigated. The simplest form of hyper-

cubic classification can be performed through visual inspection of the design space.
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Through examination of 2-D and 3-D cross-sections of a given design space, NHC re-

gions can potentially be identified where there is separation of feasible and infeasible

cases. However this means of classification is limited to dimensions less than or equal

to three and thus cannot reliably identify all features which may yield a NHC feasible

design space.

Other candidates for hypercubic classification involve examining the dependence

or correlation between design variables when only feasible cases are considered. The

design variables can be thought of as random variables whose discrete distributions

are specified by the collection of unique values the variables take for the design cases

specified in a given sample. For example, if the design space was sampled with PMC,

the distributions for each of the design variables should be roughly uniform. Any

features which would produce a NHC feasible design space would then manifest as

some form of dependence or correlation between the design variable distributions for

the feasible cases. With this realization, multiple correlation/dependence measures

such as the linear correlation coefficient (Pearson’s r), the rank correlation coefficient

(Spearman’s rho) and variable covariance were examined for their ability to detect the

signs of a NHC feasible design space. Unfortunately these methods although relatively

easy to implement, cannot detect all forms of correlation/dependence (particularly

struggling with non-linear relationships) and thus the concept of Mutual Information

MI from Information Theory was investigated.

Arising from information entropy estimation, MI is a measure of dependency be-

tween random variables. As Kinney explains: ”Mutual information rigorously quan-

tifies, in units known as ‘bits,’ how much information the value of one variable reveals

about the value of another” [45]. MI is defined mathematically as follows [50]:

Let X and Y be two continuous random variables such that the marginal densities of
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X and Y are µx(x) =
∫
dyµ(x, y) and µy(y) =

∫
dxµ(x, y), then MI is defined as:

MI(X, Y ) =

∫∫
dxdyµ(x, y)log

µ(x, y)

µx(x)µy(y)
(12)

This expression for MI can be adapted for X and Y of discrete size (as would occur

in design space exploration) by binning X and Y and approximating Eqn. 12 with

the following finite sum [50]:

MI(X, Y ) ≈MIbinned(X, Y ) =
∑
ij

p(i, j)log
p(i, j)

px(i)py(i)
(13)

where px(i) =
∫
i
dxµx(x) , py(j) =

∫
j
dyµy(y), and p(i, j) =

∫
i

∫
j
dxdyµ(x, y) and

∫
i

means the integral over bin i.

Eqn. Another useful quality of MI is displayed is elaborated by Kraskov:

In contrast to the linear correlation coefficient [Pearson’s r], it is sen-

sitive also to dependencies which do not manifest themselves in the co-

variance. Indeed, MI is zero if and only if the two random variables are

strictly independent [50].

MI is of special interest in regard to this problem because non-hypercubic features

that may potentially exist in the feasible design space would affect the distributions

with which the design variables are sampled. Not only should MI be able to detect

correlation between design variables, but should a constraint deny a region of the

design space in such a way to make the feasible space non-hypercubic, the absence

of the infeasible designs will manifest as a change in the shape of the distributions

in multiple design variables. Furthermore, in the case of a reduced hypercubic space

existing within the original design space, the distributions on the design variables

may not cover the full range, but their shape (if uniform) will remain unchanged

from fthe original sample distributions. If these assertions hold true, then MI will not
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only be able to detect non-hypercubic spaces in d-dimensions, but also distinguish

them from reduced spaces which do not occupy the entire original hypervolume but

still remain hypercubic. Because of these properties and advantages over existing

correlation estimation methods, MI was investigated through experimentation for its

potential to perform hypercubic classification.

2.2.2.2 Feasible/Infeasible Partitioning: Set-Based Design

Set-Based Design SBD or Set-Based Concurrent Engineering was investigated in

response to MQ5.2. SBD is a design methodology which presents an alternative to

traditional “point based concurrent engineering” [57, 54, 36]. Instead of locking in

a large number of design decisions early on in the design process to move forward

with an ‘optimal’ point-design, the methodology seeks to simultaneously increase

knowledge about the design space and relevant requirements while maintaining as

much design freedom as possible [63, 103]. Traditional SBD as depicted in Fig.

5, emphasizes bounding of the design space through the determination of feasible

regions (sets) which arise from preferences in design variable values and analyses

performed independently and in parallel by different disciplines [92, 31]. Because of

their isolated nature and discipline driven preferences, these independently developed

design spaces may be disjoint [96]. SBD then “integrates through intersection” to

find a global feasible set with the objective to consider all constraints and “seek

conceptual robustness” [92]. While this approach typically requires a much more

resource intensive and lengthy conceptual design phase, it has been shown to mitigate

costs and program delays associated with design problems encountered in detailed

design or production. By carrying forward multiple design solutions further into the

design process, SBD provides feasible alternatives when unforeseen problems render

the nominal design infeasible or drastically degrade its performance [54].

As illustrated by the author in [48], using an adaptation of SBD, entire continuous
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Figure 5: Graphical Depiction of Traditional Set-Based Design Methodology

regions of the design space (not just a set of multiple feasible points) can be bound

through the determination of Constraint Defined Feasible Sets CDFS. A single CDFS

represents the bounded region of the design space that is feasible with respect to an

individual constraint, and when all are ‘integrated through intersection’ they yield the

global feasible design space. Such an approach for classifying the design space is also

advantageous in that it allows for a much more robust representation of the global

feasible design space. Should an individual constraint or specific module within an

environment be updated, only those CDFS affected by such a change need be reformed

to again yield the global feasible design space. For problems subject to repeated

exploration it is hypothesized that a SBD approach is especially advantageous over
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a global approach to ultimately reveal the global feasible design space. Based upon

this a formal research question is formulated:

Research Question 3 (RQ3):

If a bounding for the global feasible design space is desired, is it more

effective to simply construct a global bounding fit to all NHC variables

or construct this bounding through the intersection of Constraint Defined

Feasible Sets CDFS found by individually bounding each separable con-

straint?

2.2.2.3 Feasible Space Bounding: Machine Learning Techniques

Driven by MQ5.3, Machine Learning techniques were found to be a set of approaches

for both classifying samples within a design space and then attempting to identify

separate regions within these spaces (effectively bounding them) [13, 9]. “Machine

learning is the body of research related to automated large-scale data analysis” [9], of-

ten also synonymous with Pattern Recognition, it is concerned with the development

and use of algorithms which can learn and draw observations from data. Machine

Learning techniques can typically be binned into one of three major categories (re-

ferring to the mechanism through which they learn from data): Supervised Learning,

Unsupervised Learning, and Reinforcement Learning. Supervised Learning methods

utilize a training data set in which a truth model provides the correct output/clas-

sification for this data set (i.e. the training set can be trusted to be correct). Un-

supervised Learning methods attempt to learn from data without this verified truth

training data set while Reinforcement Learning methods “are concerned with with the

problem of finding suitable actions to take in a given situation on order to maximize

a reward” [13]. For the design problem to be considered and problems of its class,

although the explicit form of all constraints and boundaries of model limitations may

not be known a-priori, designs will be able to be classified by whether or not they
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satisfy certain constraints and/or cause the computational method to fail. With this

information available for each design evaluated, Supervised Learning methods are the

most appropriate to provide competing methods for the classification and bounding

of the design space.

While there are many potential algorithms, based on the characteristics of the de-

sign problem and their popularity, success and applicability to the problem considered

the following two machine learning techniques were considered as potential methods

for generating an accurate and efficient design space representation [13, 9, 21]:

� Random Forests RF

� Kernel-Based Support Vector Machines SVM

It is important to note that although these two particular techniques were chosen

for further investigation and use within experimentation, they are by no means the

only types of supervised machine learning techniques applicable within the general

methodology sought. It has been illustrated that the optimal machine learning tech-

nique varies with problem characteristics and no one technique is globally optimal

[49, 21]. However, the two techniques chosen have also been shown to produce fairly

robust results for a variety of data sets and were thus deemed sufficient candidates to

examine the efficacy of utilizing supervised machine learning within the methodology

[21].

Random Forests Random forests RF or random decision forests encompass a su-

pervised machine learning technique which shows promise for the classification of

design spaces likely to be encountered within this scope of work. This technique has

been described in literature as being a good choice of classifier algorithm for generic

problems where little is known a-priori [21]. Random forests utilize an ensemble

method to average classification results produced by many (a forest) of classical de-

cision trees trained via ‘bagging’. ‘Bagging’ or bootstrap aggregating is a method
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of selecting multiple training subsets from a set of data by sampling the original set

uniformly and with replacement [14]. By constructing training sets in this way for

each of the individual trees which compose the forest, the overall classifier is much

less sensitive to an individual tree which may biased by an outlier within the data

set, thus bagging is said to produce more accurate classifiers while avoiding overfitting

[35].

An example of two separate decision trees trained through bagging is shown in

fig. 6. From the original data set (featured in the center) two training samples are

assembled through bagging and used to grow two distinct decision trees. Each node

represents a decision made on a design variable value at which the decision tree has

subdivided the space. Branches are then grown into each of those regions and the

subdivision process continues until a branch has isolated a single class. Ultimately

the space will be segmented into a series of reduced hyper-rectangles each approxi-

mately containing a unique class. These trained decision trees can now be individually

queried with new points to determine with which class these suggested points likely

belong. In a random forest, the predictions of all the decision trees are then averaged

to determine what the forest’s prediction should be for the new sample.

Random forests in addition to being relatively easy to understand and interpret,

also have some useful properties when examined for their ability to construct classifier

based boundings for design spaces. Firstly, a decision tree algorithm (and random

forest by extension) isolates unique data classes by constructing hyper-rectangular

cells within the space. Because of this inherent geometry, should the feasible design

space be a reduced hypercube or a series of reduced hypercubes with respect to the

original hypercubic volume, then a random forest classifier should be able to fit it

very accurately. Perhaps more important is the ability of random forest classifiers to

determine the relative importance of the different variables within the space. Because

split nodes in the decision trees are defined by a particular variable and value, the

46



www.manaraa.com

influence a given variable has over the forest predicting the correct classification can be

observed through the comparison of results obtained with the inclusion and exclusion

of the variable. If the predictive capacity significantly improves with the consideration

of a certain variable then it is deemed important while if its inclusion in the model

does little to change accuracy, it is likely unimportant (or its effect is confounded

with another variable(s)). Variable importance can also be captured by examining

the Gini impurity associated with the model which essentially measures the likelihood

of misclassification due to nodes containing more than one class. If the inclusion of a

certain variable allows for a significant decrease in Gini impurity then this means the

random forest is able to subdivide the space into sets which are more homogeneous

and thus provide a more accurate division of the classes. With p(i|j) representing the

proportion of the samples that are members of class c for a particular node j, then

the Gini Impurity can be expressed by Eqn. 14. These capability could potentially

prove very useful in not only reducing model complexity through ranking of important

variables, but allowing for the identification of NHC design variables.

IG(j) =
c∑

i=1

p(i|j)(1− p(i|j)) (14)

Random forest classifiers were also chosen for use within this work due to the

existence of well developed tools and support for their implementation. The ‘ran-

domForest’ R package with all of its built in functionality was an enabler for the

rapid construction, analysis, and use of random forest classifiers utilized within this

work [83, 23].
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Kernel-Based Support Vector Machines Kernel-Based Support Vector Ma-

chines SVM are another supervised machine learning technique which were consid-

ered apt for the classification of design spaces likely to be encountered within this

scope of work. Kernel-based SVM construct classification boundaries by mapping

the training data in the input space to a higher-dimensional feature space through

the use of kernel functions and associated hyper-parameters. Using a kernel func-

tion (applying the ‘kernel trick’) allows the inner products between the images of all

pairs of data to be calculated directly in the feature space, without requiring the ex-

plicit mapping to the higher-dimensional feature space [49]. There are a few different

kernels typically associated with SVM but perhaps one of the most popular is the

gaussian radial basis function RBF kernel function:

K(x, x′) = exp

(
− ‖x− x

′‖2

2σ2

)
(15)

SVM classifiers attempt to separate the data of different classes by as much dis-

tance/margin as possible in the feature space. The support vectors are the boundary

points in the higher-dimensional feature space which are closest to those of the other

class and thus determine the position and orientation of the separating maximum-

margin hyperplane. By using kernel functions to map the original space to one of

higher dimension, the potentially non-linear boundary in the input space can be co-

erced to linearly separable sets in the feature space. Expressed generally in eqn. 16, a

kernel-based SVM is trying to maximize the following Lagrangian (LP ) with respect

to −→w and b (which together define the maximum-margin hyperplane).

LP ≡
1

2
‖−→w‖ −

N∑
i=1

αiyi(
−→xi · −→w − b) +

N∑
i=1

αi (16)
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Where N is the total number of training samples, the αi > 0 are the ‘support

vectors’, −→xi the individual samples and yi = 1 or -1 designating the class to which

the ith sample belongs [49, 106]. Figure 7 depicts the process of applying a kernel

function to map input data to the feature space and then determine the maximum-

margin hyperplane. The support vectors can be identified as the points in the feature

space which anchor/define the planes offset from the maximum-margin hyperplane.

Through the ‘kernel trick’ and utilizing the support vectors and margin maximization

to construct the dividing hyperplane and thus determine the classification boundary,

SVM methods do not suffer from the curse of dimensionality. Thus these methods

can be applied to classification problems of very high dimension without becoming

computationally infeasible.

Input	Space:	X Feature	Space:					(X)

Figure 7: Depiction of Kernel-Based Support Vector Machine Mapping from the
Input Space to the Feature Space and Constructing Separating Hyperplane

Kernel-based SVM classifiers were also chosen for use within this work due to

the existence of well developed tools and support for their implementation. The

kernlab() R package with all of its built in functionality was an enabler for the rapid

construction, analysis, and use of SVM classifiers utilized within this work [83, 3].

50



www.manaraa.com

Geometric Bounding Techniques: Delaunay Triangulation Again spurred

by MQ5.3, to provide another option to bound the sets formed by a SBD approach

which would be ”integrated through intersection” to produce a bounding of the fea-

sible design space, different geometric volume bounding methods were investigated.

The field of computational geometry can be investigated to yield candidate meth-

ods and upon inspection, a few relatively simple techniques for bounding volumes

can be seen to emerge [79, 16, 64]. These techniques vary in both complexity and

accuracy for the representation of the hypervolume which they attempt to enclose,

with the general trend that the more complex/faceted and specifically oriented the

bounding volume, the more expensive it is to compute. A Delaunay Triangulation

DT based method developed by the author was investigated but ultimately found

largely infeasible for classes of problems in moderate to high dimension.

A Delaunay Triangulation DT in d-dimensions for a set of points P is a triangu-

lation in which no point within the set exists inside the circumhypersphere defined

by the d+1 points constructing a given simplex within the triangulation [79]. The

Delaunay Triangulation is distinct from other traingulation methods in that it seeks

to minimize the aspect ratios of its simplices by maximizing the minimum angle. Of-

ten used to build meshes in finite element methods, DTs provide a geometric network

between all points within a given sample. Furthermore because their construction is

geometric in nature, the DT is formed in the same space in which the points are spec-

ified (unlike with kernel-based SVM) thus preserving the physical meaning of design

variables. Additionally due to the structure provided with DTs, adaptive sampling

can leveraging the simplicies, and the relative size of simplices can be used to target

regions of reduced density.

A DT based set bounding method which performed adaptive sampling through

partial barycentric subdivision was devised and investigated by the author within this
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work. It was found to provide adequate results for bounding feasible sets in low di-

mension, but when scaled to moderate to high dimensions was found computationally

infeasible with resources available. While excellent for visualizations in low dimen-

sions and constructing actual boundaries for the feasible design space, this method

was ultimately abandoned in favor of more robust approaches. Figure 8 illustrates

the DT method created by the author being used to bound and adaptively sample a

NHC design space in 2 dimensions.

Figure 8: Adaptive Delaunay Triangulation Based Bounding

2.2.3 The Application: Multidisciplinary Conceptual Aircraft Design

The methodology sought in this thesis is motivated by a desire to more efficiently

enable multidisciplinary conceptual aircraft design. In order to capture all the rel-

evant physics as well as supply the designer with sufficient degrees of freedom, a
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very large design space consisting of many variables is often desired. While this al-

lows many factors and details to be considered within the conceptual design process,

if historical regressions must be abandoned in favor of physics-based computational

models (needed to evaluate advanced designs with emerging technology), then such

dimensionality can lead to high resource cost. Without compromising the fidelity

of computational environments, this thesis seeks a methodology that will allow such

a design space to be thoroughly explored without wasting resources, irrespective of

what constraints, correlations or regions of infeasibility lie within. Formally stated as

a research question:

Research Question 4 (RQ4):

Can use of the proposed methodology demonstrate an improvement in

efficiency and knowledge gain with respect to state of the art practices

in design space exploration techniques for a realistic aircraft conceptual

design problem?

2.2.3.1 Challenges

Before the advent of modern computational methods, aircraft conceptual design was

largely performed using regressions against historical data [84]. Certain parameters

would be regressed against vehicle reference weights or areas and collected with other

aircraft of a similar type. These methods proved very useful and accurate as long as

materials and manufacturing techniques marched along at an evolutionary pace. But,

with the infusion of emerging technologies and the consideration of advanced airframe

concepts such as the HWB, there is no historical data to rely upon for performance

analysis.

To enable the design and analysis of advanced concepts a new paradigm was

forged which embraced physics-based computational methods as replacement for the

historical regressions. These physics-based methods come in two forms: analytical
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models (which can be solved exactly) and numerical models. Analytical models are

attractive due to their exact solutions, however often lack sufficient fidelity to model

all relevant physical phenomena present within practical engineering problems. Thus,

numerical methods are frequently utilized to address this gap, yet these methods came

with their own limitations including computational expense, convergence issues and

model error. Additionally the linking of different stand-alone codes and creation of

so-called ‘black box’ tools where the user cannot access the source code can lead

to many computational and user errors which produce failures. These errors can

range from such things as embedded solvers that become ill conditioned and cannot

converge to codes that are extended beyond the realm of their original application

and thus produce unvalidated/garbage results if any at all. Therefore care must be

taken when exploring computational design spaces, for while enabling large conceptual

explorations, they are still bound by the laws of physics and the assumptions used in

their creation.

2.2.3.2 Numerical Modeling: The Environmental Design Space

As moderate to high fidelity analysis was deemed necessary for the physics-based con-

ceptual design of an advanced aircraft such as the HWB and therefore, a numerical

method appeared most appropriate to accurately capture the physics present for such

an application. The Environmental Design Space EDS is a numerical modeling and

simulation environment composed of an integrated set of NASA developed computa-

tional models [46]. EDS was developed for the FAA to ultimately help predict and

project emissions estimates for current and future civil transport aircraft [47]. EDS

takes an approach similar to those followed in [24, 25, 53, 67, 18, 34, 85, 10] with

the integration of various disciplinary analyses into a singular modular computer pro-

gram. EDS is composed of the following main computational models which capture

relevant physics from the different disciplines:
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� Numerical Propulsion System Simulation NPSS

� Compressor Map Generator CMPGEN

� Weight Analysis of Turbine Engines WATE

� Flight Optimization System FLOPS

� Pressure and Temperature Correlations P3T3

� Aircraft Noise Prediction Program ANOPP

The modules composing EDS are integrated into a unified environment using the

NPSS programming language to enable input/output I/O between modules. Figure

9 displays how data propagates through EDS.

Furthermore, as Gatian [26] states:

EDS has been validated and calibrated using existing vehicle data for a

wide variety of aircraft architectures and seat classes. Its capabilities have

been proven through its application to various assessments for NASA, the

FAA, and academia. The results of many of these studies have been pre-

sented at various conferences and published in leading aerospace journals.

[17, 30, 32, 38, 40, 39, 43, 44, 65, 73, 74, 75, 77, 76, 87, 88, 89]

Based upon the physics-based capabilities of EDS for use in aircraft conceptual

design, its established pedigree, and ability to be parallelized to reduce user execution

time, it was selected as the modeling and simulation environment with which to

benchmark the proposed methodology through experimentation.

2.2.4 Refined Scope of Research

Through literature review and preliminary testing of competing alternatives, the most

promising techniques were identified for the proposed methodology. Some of these
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Figure 9: Environmental Design Space Module Layout [26]

techniques were able to be down-selected purely from conclusions drawn from syn-

thesis of literature, while others require further experimentation to demonstrate their

applicability or utility within the methodology. Table 3 illustrates the alternatives

which were down-selected for use and experimentation within the proposed method-

ology.
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CHAPTER III

PROBLEM CHARACTERIZATION

3.1 Canonical Example Problem Description

The canonical example problem was meant to illustrate the presence of non-hypercubic

design spaces in relevant aircraft design problems. A multidiciplinary conceptual wing

design problem was selected for investigation in this example due to the inherent pres-

ence of requirements and constraints, from multiple physical diciplines, which when

simultaneously considered would likely result in an NHC feasible design space. For

this example, A simple physics-based environment was constructed for the design of a

clean sheet wing with an integrated variable camber trailing edge V CTE flap. Using

Euler Beam Theory as a structural model and Prandtl Lifting Line Theory for an

aerodynamics model [28, 12], a simplified wing can be designed and the simulated

application of a variable camber trailing edge device evaluated. This choice of models

is particularly advantageous because even though many assumptions need to be made

and many finer elements of the wing structural and aerodynamic design omitted (such

as complex wing box construction, sweep, compressible flow regimes), these models

are sufficient to demonstrate some of the major physical interactions at work in a

multidisciplinary aircraft design problem and highlight some of the challenges which

make the exploration of such a design space difficult. Furthermore, they can provide

an analytic solution for the multidisciplinary problem thus allowing for relative ease

in querying and extracting characteristics of the design space. For simplicity and ease

of design space visualization, the wing designed with this canonical example, as seen

in Fig. 10 will feature only five design variables and will be restricted to a straight

un-tapered wing with no twist or dihedral.
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Figure 10: Planform and Cross-Sectional Views of the Wing Utilized for the Canon-
ical Example Problem

3.1.1 Model Construction

The computational model constructed for the canonical problem consists of a cou-

pled Prandtl Lifting Line Theory function and a set of expressions defined by Euler-

Bernoulli Beam Theory. The Lifting Line function first discretizes the wing as a

series of discrete horseshoe vortices emanating from the wing quarter-chord and dis-

tributed spanwise with a cosine spacing. These vortices produce a circulation given

by equation 17. The Biot-Savart law is then used with the circulation distribution to

determine the downwash induced in the wake of the wing (Eqn. 18). This result can

then be combined with a definition of the local circulation as a function of the airfoil

2D lift-curve slope and resultant angle of attack (Eqn. 19) to produce the the mono-

plane equation (Eqn. 20) which provides a means to solve for the Fourier coefficients

(An) for each of the horseshoe vortices. Finally the lift distribution can be obtained

by the integration of the circulation distribution over the wingspan (Eqn. 21). This

lift distribution is then used to provide the aerodynamic load used to size the required

wing structure. To simulate the effect of a deflected VCTE, a flap section is specified

over a portion of the wing span by adjusting the local zero lift angle of attack for

that particular section. Figure 11 illustrates example lift distribution results with

the left image depicting the lift distribution resulting from a nominal wing while the

right shows the lift distribution which results with the addition of a trailing edge flap

which spans from the wing root to approximately 60 percent of the total semi-span.
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Γ(y) = Γ(θ) = 4sV∞

∞∑
n=1

Ansin(nθ) (17)

wi = V∞

∞∑
n=1

nAnsin(nθ)

sin(θ)
(18)

Γ =
1

2
a0V∞c(α− αi + θt − α0) (19)

∞∑
n=1

Ansin(nθ)

(
sin(θ) +

na0c

8s

)
=
a0c

8s
sin(θ)(α + θt − α0) (20)

 L = ρV∞

∫ s

−s
Γ ∗ dy (21)

Figure 11: Example Lift Distributions Plotted against the Wing Semi-span

Once the aerodynamic load for a specified flight condition is calculated using the

Lifting Line function, this load distribution can be combined with others such as the

weight of the fuel stored inside the wing and the weight of the wing itself. This wing

load profile is then completed with the addition of a point load representing the weight

of an engine attached to the wing. Now with all the loads known, Euler-Bernoulli

Beam Theory (Eqn. 22) can be applied and simplified for a beam of constant stiffness
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to determine the distribution of shear forces (Eqn. 23), bending moment(Eqn. 24),

beam slope (Eqn. 25) and beam deflection (Eqn. 26) in the bending plane.

d2

dx2

(
EI

d2w

dx2

)
= −q(x) (22)

V (x) =

∫
−q(x)dx = EI

d3w

dx3
(23)

M(x) =

∫
V (x)dx = EI

d2w

dx2
(24)

S(x) =

∫
M(x)

EI
dx =

dw

dx
(25)

w(x) =

∫
S(x) (26)

Using this model and a critical flight condition or maneuver, a simplified wing can

be designed with a set of design variables which provide details about wing aerody-

namic and structural geometry. The performance of this particular wing can also be

tracked through metrics of interest such as the lift-to-drag ratio, and the feasibility of

the design assessed through the application of relevant constraints. Ultimately, after

the application of constraints, feasible sets can be constructed and through plotting

these sets of designs the shape and characteristics of the design space visualized.

3.1.2 Assumptions

In order to utilize such simplistic models for the complex coupled aero-structural

wing design problem and still produce credible results and trends, many assumptions

must be made. Some assumptions arise from the physical limitations inherent in the

models themselves, while others are made for convenience and simplification of the

analysis. Assumptions made for this canonical problem are as follows:
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� General Assumptions

1. Aircraft characteristics are representative of a 300 passenger civil transport

with a total weight of 600,000 lbs and a fuel weight of 300,000 lbs

2. Wing sizing maneuver is a +2.5g pull-up performed at an altitude of 39,000

ft and a Mach number of 0.84

� Aerodynamics Assumptions

1. Limitations of Lifting Line Theory apply

– Steady flow

– Inviscid flow

– Incompressible flow

– High Aspect Ratio, unswept wings

– Linear lift curve slope (a0)

2. Wing is modeled as the only lifting body

� Structural Assumptions

1. Wing is idealized as a box beam of constant cross-section (constant moment

of inertia along the span) and uniform wall thickness

2. Wing is in pure bending and remains in the elastic region

3. Wing material has the properties of solid Aluminum 7075-T6

4. Wing weight is treated as a uniform distributed load across the span and

assumed to be 1.8 times the weight of the box beam which comprises the

primary structure

5. Wing fuel weight is modeled as a uniform distributed load across the span

and 60 percent of the total wing fuel is assumed to be stored within the

cavity in the wing box beam
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6. Engine weight is modeled as a point load on each wing located two fuselage

diameters (approximately 40 ft) from the wing centerline

� Geometric Assumptions

1. Straight, planar, un-tapered, un-twisted, cantilever wing with constant

airfoil section (except for VCTE segment)

2. Airfoil characteristics based on BAC 1 supercritical airfoil

3. VCTE flap span begins at the wing root

4. VCTE deflection is modeled as a -6 degree change in α0

5. Box beam height is 80 percent of maximum wing airfoil thickness and

width is 40 percent of wing chord

6. Useable fuel volume within the wing box is 90 percent of the cavity volume

Furthermore, the extent of the design space can be artificially reduced for visu-

alization and analysis simplification purposes. For this canonical problem five wing

design parameters deemed particularly relevant and familiar were and appropriate

ranges for consideration were chosen, they are:

� b: wing span, Range: 160 - 260 ft

� AR: Aspect Ratio, Range: 8 - 12

� t/c: thickness to chord ratio, Range: 0.08 - 0.18

� d: beam wall thickness to box beam height ratio, Range: 0.005 - 0.200

� sVCTE: span of the VCTE flap section to semi-span ratio, *Range 0.1 - 0.8

*Note: for each design, a corresponding wing without an VCTE flap section

was constructed for comparison
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With these five design variables and the assumptions listed above, the wing can

be fully defined and analyzed to determine how a particular design performs and

what constraints it satisfies. By utilizing a DOE, combinations of design variable

values can be specified for unique designs spread throughout the design space. The

performance for each of these designs can be recorded and they can be classified as

feasible or infeasible. With many constraints to satisfy, a wing design will only be

considered globally feasible if it simultaneously satisfies all constraints.

3.1.3 Constraints

For any wing design to be considered in earnest and designed to a specific set of

requirements, it must be subject to a set of relevant constraints. In this canonical

problem, seven constraints are selected to represent some of the challenges encoun-

tered in wing design and hold the designs to a degree of realism. The constraints

attempt to provide a small sample of similar aerodynamic, structural, aeroelastic,

geometric and operational constraints that a wing designed using a more rigorous

process would also feature. The constraints applied for this canonical problem are as

follows:

1. Wing Stall: the wing angle of attack must be less than 16 degrees

2. Maximum Moment: the stress produced by the maximum bending moment

encountered in the wing beam must not exceed the maximum allowable stress

determined by the structure, material properties and a safety factor of 1.5

3. Maximum Shear: the stress produced by the maximum shear force encoun-

tered in the wing beam must not exceed the maximum allowable stress deter-

mined by the structure, material properties and a safety factor of 1.5

4. Maximum Deflection: the wing tip must not have a deflection magnitude
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that exceeds 30 percent of the wing semi-span (to prevent the need for consid-

eration of dynamic aeroelastic effects)

5. Fuel Volume: the internal wing box volume available for fuel storage must be

at least equal to that required

6. Wing Weight: the wing weight must not exceed 60 percent of the combined

empty and payload weight

7. Minimum Gauge: the wing box wall must have at a thickness of least 0.032

inches

By sampling the design space with a DOE and then applying the listed constraints

for each design, sets of designs with common characteristics can be constructed. Some

designs may not satisfy any of the constraints, these designs can be classified as

globally infeasible. Many designs satisfy at least some of the constraints and thus

for those particular constraints these designs are classified as locally feasible and can

be grouped to form constraint defined feasible sets. The few designs which happen to

satisfy all constraints are classified as globally feasible and the subset of the design

space to which they belong defines the extent of the feasible design space.

3.2 Results

The canonical example problem, while a reduced and less realistic investigation com-

pared to practical design problem, incorporated the effects of some of physical dis-

ciplines inherently present in aircraft conceptual design. As such, the results of this

example can be envisioned as a subset of the potential phenomena present in a re-

alistic design problem. The results for this example problem were largely analyzed

through visual inspection, yet even viewing 2 and 3 dimensional projections of the

design space provided significant evidence that the global feasible space exhibited

non-hypercubic characteristics.
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3.2.1 Design Space Visualization

To gain understanding and better extract defining characteristics of the problem,

both the design space and the response space can be visualized. The response space

provides a depiction of the performance of the designs considered and can ultimately

be utilized to determine the optimal designs. Figure 12 illustrates the shear force and

moment experienced by the wing. The asterisks represent the forces and moments

from various load sources for a nominal wing, while the solid lines belong to a wing

with a simulated VCTE flap, the black lines represent the superposition of all con-

tributions. Figure 13 shows the wing deflection response. Figures 14 and 15 depict

the 5-D design space in 2 and 3 dimensions showing designs which satisfy the fuel

volume constraint in green and those satisfying the wing weight constraint in red. In

Fig. 14, the blue circles mark the only designs to satisfy all constraints while in Fig.

15 these globally feasible designs are enclosed within a convex hull.

Figure 12: Example Shear Force and Moment Diagrams Plotted against the Wing
Semi-span

3.2.2 Conclusions and Consequences

The results obtained in the canonical example problem illustrated the presence of

constraints and variable correlations responsible for the boundaries of the feasible

space within the hypercubic volume defined by design variable limits. Thus, the design
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Figure 13: Example Deflection Diagram Plotted against the Wing Semi-span

Figure 14: 2D Depiction of the 5D Design Space

space for this problem and by association that of larger aircraft conceptual design

problems are assumed to be potentially non-hypercubic. This result also validates
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Figure 15: 3D Depictions of the Design Space

the search for a more efficient methodology to explore this class of design space. It

can clearly be seen in Fig. 15 from the convex hull used to bound the feasible design

cases which exist at the intersection of all constraint defined feasible spaces, that

the global feasible design space occupies only a small and irregular volume within

the considered hypercubic design space. Thus by seeking out and bounding this

non-hypercubic space and then leveraging this representation to guide future design

space exploration, it is evident that computational resources can be used with much

improved success and therefore efficiency.
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CHAPTER IV

METHODOLOGY

4.1 Design Space Exploration Decision Support Methodol-
ogy (DSE-DSM)

A new methodology is proposed to address the shortcomings of current methods when

applied to conceptual design problems which are computationally expensive, non-

hypercubic and require repeated exploration. In general, a methodology is sought

to provide Design Space Exploration Decision Support for generic spaces of interest

recognizing that the above factors, if present, should influence how this exploration

is performed. The top down decision support process (Fig. 16 - adapted from the

Georgia Tech Generic IPPD Methodology) can provide a framework to help identify

the pieces of such a methodology [4]. The first step in this process is to ‘Establish

the Need’ which for design space exploration encompasses end goals such as regres-

sion/surrogate generation, optimization, visualization and knowledge gain. Current

practices can successfully enable these goals for certain types of problems. However,

by making the assumption that all design spaces are hypercubic in nature and ignoring

important characteristics of the design problem, resources may be used inefficiently

and incorrect conclusions drawn due to extrapolating models. Thus it is imperative

that this new methodology consider as input the characteristics of the design

space of interest as well as the availability of the resources used to explore it. Sec-

ondly to ‘Define the Problem’ the unknown properties of the design space must be

elicited which may only happen through a sampling of the space. Without expending

all available resources, an initial sample can allow for hypercubic classification of

the design space to determine if any additional steps should be taken to depart from
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the common practices of exploration using hypercubic sampling methods. If the fea-

sible space is found to be non-hypercubic, additional information must be considered

to ‘Establish the Value’ of a non-traditional approach for design space exploration.

The consequences of sampling the space Business As Usual BAU must be quantified

as well as the potential benefits of an ‘Alternative’ approach. Leveraging this infor-

mation can allow for informed design space exploration guidance to help select

the best course of action considering the unique problem characteristics. Ultimately

a ‘Decision’ must be made whether the traditional DSE approaches should be aban-

doned in favor of one which leverages known characteristics of the design space. For

problems which are computationally expensive, non-hypercubic and require repeated

exploration, Set-Based Bounded Adaptive Sampling will likely prove an enabler

for the efficient and effective exploration of the design space in question. These steps

are combined to form the Design Space Exploration Decision Support Methodology

(DSE-DSM) featured in fig. 17. This methodology serves as the Overarching Thesis

of this work and as such was tested element wise and as a whole with the experiments

performed.
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Figure 16: Top Down Decision Support Process Adapted from the Georgia Tech
Generic IPPD Methodology [4]
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Figure 17: Design Space Exploration Decision Support Methodology (DSE-DSM)
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4.1.1 Input Design Space and Resource Characteristics

The first step of the DSE-DSM is to process as input the characteristics of the design

space and the available resources. With regard to the design space, attributes of

interest are as follows:

� Number of design variables/dimensions (d)

� Design variable limits (this defines the hypercubic design space)

� Design variable type, continuous or discrete (methodology has only been tested

for continuous DV)

� Number of constraints or failure modes known a-priori (this helps determine if

a Set-Based approach would likely be beneficial)

� Maximum sample budget (nmax)

The combination of nmax and d help determine the ultimate resolution at which the

given design space can be sampled and provide guidance for how much of the total

sample budget should be utilized for the initial design space exploration. If the design

space can only be sampled with a relatively low resolution, then more of the total

sampling budget should be utilized for the initial exploration in order to better capture

potential features which may make the feasible space non-hypercubic. Conversely, if

relatively high resolution can be utilized to sample the space then a smaller percentage

of the budget should be utilized for the initial sample (once a critical resolution is

achieved) and the rest reserved for adaptive sampling and (potentially) bounding

refinement.

The next set of information gathered in this step is utilized to provide an estimate

of the relative expense and consequence associated with design space exploration of

this particular space. With regard to these subjective metrics, attributes of interest

are as follows:
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� Characteristics of the Experimental Apparatus (computational or physical, run

in serial or parallelized, resource intensive or cheap, setup difficulty)

� Characteristics of the results (can infeasible cases/failures be readily identified,

time sensitive)

� Goals: the end use for the information gained (Regressions/surrogates, opti-

mization, visualization, exhaustive search, debugging, etc.)

� Expectations for repeat exploration (will this particular design space or subsets

of it be revisited, if so how frequently)

These problem attributes help describe the potential expense and consequence asso-

ciated for performing design space exploration for the problem under consideration.

Due to some characteristics, (ex. expensive physical testing with difficult set-up)

adaptive sampling may simply be infeasible. Furthermore, if results are not eas-

ily classified, it matters not if the space is non-hypercubic in truth if the output

is incapable of revealing it. The end use of the information illuminates the poten-

tial consequences of sampling a non-hypercubic space using hypercubic techniques

with issues ranging from simple loss of resources to unknown extrapolation occurring

within regression models. Lastly, repeat exploration serves a multiplier for expense

and makes knowledge about the design space of interest increasingly valuable. Ulti-

mately, the expense and consequence associated with sampling BAU vs. utilizing the

DSE-DSM is up to the user to decide, but using the information collected within this

step and the next two, the methodology provides guidance to how one should likely

proceed under a certain set of likely scenarios.
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4.1.2 Initial Design Space Exploration

To perform the initial design space exploration a DOE was desired that maximizes

the information return yet was robust to the unknown characteristics of potential fea-

tures present within a given design space. As non-hypercubic features are potentially

expected, the statistical benefits which may come from a structured design (like a

Minimax LHS) may be diminished or invalidated due to the presence of infeasible

regions of unknown shape and size. This problem is further exacerbated if adaptive

sampling is to be performed as even designs such as nested Latin Hypercube Samples

may lose their careful structure in a non-hypercubic design space that is repeatedly

explored. So as not to purposefully bias any regions of the design space the DOE of

choice should attempt to approximate a uniform distribution in all design variables.

For all these reasons as well as their heavy use in contemporary problems involving

computer experiments, PMC, Quasi-MC and LHS DOE are thus preferred for the

initial design space exploration [29].

Once the initial design space exploration has been performed by evaluating the

initial DOE with the experimental apparatus for the problem, the output data must

be classified. Based upon the experimental apparatus characteristics and the quali-

ty/granularity of the output data this classification can be done with differing levels

of of resolution. It is desired to be able to bin this date into multiple sets correspond-

ing to individual constraints or mechanisms of infeasibility. For each set available for

identification, it is also important to compute the percentage of successful designs,

with respect to the total initial sample set, which remain feasible. Ultimately a global

feasible set must at least be identified (defined as the intersection of the feasible sets

for all relevant constraints) from which to draw conclusions about the nature of the

design space through hypercubic classification.

75



www.manaraa.com

4.1.3 Feasible Space Hypercubic Classification

With the initial sample run and classified, the next step in the DSE-DSM is to classify

the feasible design space as hypercubic or non-hypercubic. As highlighted in Obser-

vations 2.1.1 and 2.1.2, should specific constraints or significant variable correlation

exist within the design space, the feasible space would be made non-hypercubic and

thus detection of these features could allow for hypercubic classification. There exist

many methods which can detect or estimate specific correlations between variables

such as Pearson’s correlation coefficient, however a method is desired to capture any

relationship linear or non-linear in any number of dimensions existing between de-

sign variables. As detailed earlier in this work, Mutual Information appears to fit

this requirement perfectly and with such a potential enabler, hypothesis 1 is formally

stated:

Hypothesis 1: Regarding RQ1:

If Mutual information is used as a classifier, then for a given design space

if the MI value computed for the feasible region is greater than the MI

value computed over the entire region sampled, then the Design Space is

Non-Hypercubic.

This hypothesis will be tested through experimentation, but assuming for the

moment that it can be substantiated, a process is needed through which MI can be

calculated for the design space of interest and ultimately a decision made as to the

classification of the space. It is important to note that for a general design space, no

mater how it was sampled, that the initial design space sample will not be perfectly

uniformly distributed in all design variables (even if hypercubic). This is due to the

discrete and finite nature of the DOE used to explore this space. Thus a baseline

value of MI should be computed for this entire sample with which to ultimately

compare to that attained from the feasible subset. It is also important to note that
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this baseline MI value (or values computed from drawing multiple repetitions) should

strive to contain the same number of cases and thus maintain the same resolution

as the feasible sample so as not to unfairly bias the baseline MI calculation. With

these considerations observed, the procedure devised by this work for hypercubic

classification utilizing Mutual Information is as follows:

1. Generate multiple random samples of a fraction of the initial data set (where

this fraction corresponds to the same fraction of design cases that were classified

within the set as globally feasible)

2. Compute the MI of these representative baseline samples

3. Compute the MI of the feasible design space (using only the globally feasible

design cases)

4. Compute the difference between the feasible space MI value and the baseline

MI values

5. classify this space as NHC if the mean of this MI difference (feasible - baseline)

accounting for the standard error about the mean is consistently positive and

the resolution with which the space has been explored is believed sufficient

The classification results yielded by this element of the methodology provide the

final piece of information ultimately utilized to provide informed DSE guidance. Such

information provides vital evidence of whether or not abandoning BAU hypercubic

sampling techniques could be beneficial or even necessary for exploring the design

space in question.

4.1.4 Informed Design Space Exploration Guidance

Following the first three steps of the methodology, important information has been

gathered about the design space, the resources available to sample it and the motiva-

tion behind performing design space exploration for the problem of interest. For the

77



www.manaraa.com

purpose of providing guidance of how the space should be explored beyond the initial

sample, this information is condensed into three metrics (which were estimated in the

previous steps):

� Tolerable Percentage of Global Infeasible/Failed Designs TPF : mea-

sure of how much potential volume is affected by features within the design

space and the resources that will be lost if sampling BAU is continued and

whether this percentage is tolerable to the user

� Hypercubic Classification HC: whether the space was found to be hyper-

cubic or not, and to what degree

� High Expense/Consequence HEC: subjective measure of how expensive

it is to explore the design space and the consequence(s) of making incorrect

assumptions about the feasible design space

Figure 18 illustrates the decision hierarchy which leverages these metrics to provide

informed design space guidance. While not exhaustive, eight probable scenarios are

illustrated through the branching of the flowchart each terminating with design space

exploration guidance unique to the particular characteristics of the design sapce and

problem in question. The Design Space Guidance DSG options presented are elabo-

rated as follows:
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1. DSG1: (TPF: YES, HC: YES, HEC: YES) Check the ranges on the Design

Variables (DV) to ensure no one variable is globally infeasible over some portion

of its range. Once this check has been performed, sampling with any DOE

except a brute force approach is acceptable.

2. DSG2: (TPF: YES, HC: YES, HEC: NO) Continue sampling BAU, all DOE

including brute force are acceptable, as failures are tolerable and expense is low

it is unnecessary to check ranges.

3. DSG3: (TPF: YES, HC: NO, HEC: YES) Bounded Adaptive Sampling (BAS)

is strongly advised, can continue sampling BAU but beware risk of extrapolation

and the potential presence of correlations/constraints within the design space.

4. DSG4: (TPF: YES, HC: NO, HEC: NO) Space-filling DOEs are recommended,

brute force may be acceptable if available, BAS is advisable but not necessary

(may want to at least identify NHC variables).

5. DSG5: (TPF: NO, HC: YES, HEC: YES) No underlying structure was found

in the design space, failures appear random or due to aggressive DV range

selection, check DV ranges and for convergence or numerical issues if possi-

ble. Failures may be arising from internal optimizer with ill-conditioned initial

guesses. Unknown variables not explicitly expressed in DOE may also be at

play. After experimental apparatus has been examined, continue sampling with

a space-filling DOE. Bounding is likely unhelpful or inconclusive until greater

sampling density is achieved within the design space.

6. DSG6: (TPF: NO, HC: YES, HEC: NO) No underlying structure was found

in the design space, failures appear random or due to aggressive DV range

selection, check DV ranges and for convergence or numerical issues if possi-

ble. Failures may be arising from internal optimizer with ill-conditioned initial
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guesses. Unknown variables not explicitly expressed in DOE may also be at

play. After experimental apparatus has been examined, continue sampling with

a space-filling DOE or brute force if possible. Bounding likely unhelpful or

inconclusive until greater sampling density is achieved within the design space.

7. DSG7: (TPF: NO, HC: NO, HEC: YES) BAS is necessary, allow for multiple

iterations of BAS for greatest effect. Exercise caution when fitting regressions

to this space and utilize BAS results to monitor their applicability.

8. DSG8: (TPF: NO, HC: NO, HEC: NO) BAS is strongly advised particularly

if the space will be repeatedly explored, allow for multiple iterations of BAS

for greatest effect. Can continue sampling BAU but will still experience unac-

ceptable percentages of infeasible/failed designs. Exercise caution when fitting

regressions to this space and utilize BAS results to monitor their applicability.

This design space exploration guidance provides a path forward for future explo-

ration of the design space informed by qualities observed from initial sampling and

analysis. Many paths forward advocate to continue sampling BAU, and for these

paths, here is where the DSE-DSM ends. However, for those scenarios in which BAS

is advised the methodology transitions into its final (but considerable) step in which

Set-Based Bounded Adaptive Sampling is performed to more efficiently and effectively

explore the design space of interest.

4.2 Set-Based Bounded Adaptive Sampling (SeBBAS)

With the decision made to pursue a path of adaptive sampling in order to leverage

information previously generated about the design space yet conserve future exper-

imental effort, the question arises of how this should be performed. Given that the

design space is likely non-hypercubic (as this path was chosen) the challenge is now to
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efficiently sample a design space with unknown interior boundaries and regions of fea-

sibility. Research question 2 suggested a solution to this and asked if the construction

of a bounding for this non-hypercubic space would be generally useful for its future

exploration. While seemingly trivial, other factors at play such as the resolution of

the design space and potentially the bounding method used could make this question

not so easy to definitively answer. Therefore, hypothesis 2 is formulated to explore

this question through experimentation and determine if adaptive sampling leveraging

a bounding is a useful path forward.

Hypothesis 2: Regarding RQ2:

If a bounding is constructed using sufficient resolution to resolve the fea-

tures present within a non-hypercubic design space, then it can be lever-

aged to enable more resource efficient future exploration of the space.

Assuming again that hypothesis 2 can be substantiated the elements required

for a bounded adaptive sampling method are elaborated. The computational ex-

pense of problems requiring adaptive sampling necessitates intelligent computa-

tional resource management and conservation whenever possible with great em-

phasis placed on the elimination of waste resulting from the evaluation of designs in

infeasible regions. This requirement brings to light the importance of determining the

boundaries of the feasible design space. Because of the design problem characteristics,

it is likely subject to many constraints of various types as well as design variables with

potentially significant correlations. These relationships may or may not be known a-

priori, and the design space must be sampled thoroughly to determine where these

limiting features of the design space exist. Adaptive sample generation methods

will prove useful in this endeavor by using guidance from discoveries made in previous

sampling iterations to steer future samples away from regions denied by constraints

and/or variable correlations. Assuming this design space exists for a computational
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problem, as design points are selected to be evaluated throughout the design space

they must be evaluated using a physics-based computational analysis which cap-

tures all of the relevant physics, assumptions and requirements for the design problem

being explored. From this analysis, the performance of each design can be determined

along with its standing with respect to all of the constraints. At this step in the pro-

cess it is necessary to provide a classification of results into sets, binning designs

in order to enable the mapping of the design space and ultimately inform the next it-

eration of designs to be considered. Some designs may be globally feasible and satisfy

all constraints, while others may only satisfy some constraints and others still none

at all. Some designs may not even return valid output, due to computational model

limitations such as convergence failure or exceedance of model applicability ranges.

Once classified, these designs can now be utilized to construct a feasible Machine

Learning based design space bounding. Leveraging the ideas of Set-Based de-

sign, sets can be formed for individual constraints and regions of partial feasibility

and then ‘bound’ using Machine Learning classificiation algorithms. Determining the

intersection of these bounded sets will yield an estimate for the true feasible design

space [48]. With this estimate, new sample points can be suggested which attempt to

expand or refine this mapping or simply more thoroughly explore the already iden-

tified feasible design space. Ultimately, through iterative adaptive sampling guided

by this set-based bounding of the design space, computational waste can be pro-

gressively eliminated and an accurate and well sampled representation of the feasible

design space produced. This product can then be used to generate regression mod-

els, perform bounded optimization, visualize the design space or simply allow more

efficient future DSE. Eventually, when the problem must be revisited with updated

constraints and/or assumptions, the bounding will serve as an excellent starting guide

for intelligently and efficiently probing the updated problem.
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Figure 19: Set-Based Bounded Adaptive Sampling (SeBBAS) Method

4.2.1 Computational Resource Management

This element of the methodology is responsible for tracking and allocating compu-

tational resources. Because the methodology is based on an iterative sampling and

mapping of the design space, this element is necessary to ensure that successive itera-

tions have sufficient computational resources to exploit the discoveries of the previous

iterations. For this reason it is desirable to hold a percentage of the available computa-

tional resources in reserve for future iterations. However, if the resource management

is too stingy with resources during the onset of adaptive sampling, the bounding pro-

duced from initial design space exploration of the feasible design may not be refined

enough to provide an accurate representation of the space or even identify all possible
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regions of feasibility. However, excessive computational expenditure in the initial iter-

ations may waste computational resources by over-exploring infeasible regions (where

the bounding is ill-defined or inaccurate) and leaving too few cases left to refine and

thoroughly explore feasible areas. This time dependent placement of samples is very

similar to objectives of stochastic optimization methods like genetic algorithms and

simulated annealing. In both cases, it is generally desired to first explore the entire

design space then gradually transition to exploitation of promising regions. Such an

approach toward resource management is utilized for this method with the particular

DSE end goals used to determine whether emphasis is placed on refining the NHC

boundaries or sampling the bound feasible space.

4.2.2 Adaptive Sample Generation

The adaptive sample generation element is responsible for determining the placement

of designs to be evaluated for the current iteration. As the boundings are constructed

for the individually classified feasible sets, this information will be utilized to guide the

sample sets of the following iterations. Based on the current priorities of the resource

management element, candidate designs can be suggested which have a high likelihood

of refining the feasible design space boundary, improving sample density in sparsely

sampled regions or simply exploring the currently defined feasible space. Candidate

designs are ranked and then selected using a threshold or quota limit for the current

iteration. This is achieved through querying the bounding classifiers about points that

contain the greatest classification uncertainty (these become suggested designs for

boundary refinement) or have low classification uncertainty and are deemed feasible

(these become suggested designs exploitation and feasible space exploration). Those

candidate designs deemed likely infeasible by the classifiers can be used for exploration

and to add resolution to regions currently believed infeasible. This process of adaptive

sampling will continue until all computational resources have been expended.
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4.2.3 Physics-Based Computational Analysis

The physics-based computational analysis element is where the evaluation of design

alternatives occurs. Once the designs have been selected by the sampling method, the

cases can be run in this environment to determine their performance and adherence

to constraints. In general, for the larger class of problems described simply as compu-

tationally expensive, non-hypercubic and requiring repeated exploration, this method

could contain any analysis which can transform sample point inputs into responses.

For the specific design problem considered in this dissertation, this element is

composed of a state-of-the-art multidiciplinary physics-based conceptual design en-

vironment (EDS) in which advanced aircraft concepts with the infusion of emerging

technologies can be evaluated. In order to reduce the computational expense for the

purposes of performing experiments with this environment, the aircraft noise modules

will be deactivated to decrease individual case run time.

4.2.4 Classification of Results into Sets

In order for designs to be of use in constructing a bounding for the design space they

must first be binned into sets of designs with similar characteristics and classified

according to what regions of the design space to which they belong. To accomplish

this, designs are collected into Constraint Defined Feasible Sets CDFS which

are defined as follows [48]:

Let H ⊂ IRd be the d-dimensional hypercube defining the extent of the design space

s.t. a unique design can be expressed as Xj = [x1j, x2j, . . . , xdj] ∈ H∀j = 1, 2, . . . , n

where xij ∈ [xiLowerLimit, xiUpperLimit]∀i = 1, 2, . . . , d

Let Fk(Xj) =


1 if Xj is Feasible w.r.t Constraint k

0 if Xj is Infeasible w.r.t Constraint k

Then the Constraint Defined Feasible Set for the kth constraint is given by:

CDFSk = {Xj ∈ H : Fk(Xj) = 1}∀j = 1, 2, . . . , n
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s.t. for a total of C Constraints, the Global Feasible space G =
C⋂

k=1

CDFSk

By collecting the classified designs into sets in this manner, the global feasible

design space is inherently given by the intersection of all the CDFS. Such an approach

is advantageous because as in Set-Based Design, the boundary of a given CDFS

may only be a function of a subset of the total number of design variables. This is

potentially valuable because it implies that for a given design space sample budget

the effective resolution with which a given CDFS has been sampled may be greater

than that with which the global feasible set has been sampled. It is likely that with

greater sampling resolution comes more accurate boundings and thus hypothesis 3 is

stated:

Hypothesis 3: Regarding RQ3):

If a set-based design (SBD) approach, which integrates through intersec-

tion multiple Constraint Defined Feasible Sets (CDFS), is used to con-

struct a global boundary of the feasible design space, then this approach

will provide a more efficient and accurate representation of the true feasi-

ble space than simply bounding the global feasible set.

4.2.5 Machine Learning Based Design Space Bounding

The bounding of the design space is of critical importance to the effectiveness of the

iterative adaptive sampling employed by the SeBBAS method. The bounding must

be refined enough to construct a adequate representation of the design space to assist

in the identification of areas of infeasibility and possible limitations in the computa-

tional environment. However, because the problem considered is also computationally

expensive, it is desirable to construct and then thoroughly explore this global bound-

ing with the minimum amount of resources as possible. Key to construction of the

global bounding is the determination of boundaries within the design space that ex-

ist between designs of different classifications. These boundaries will be defined by
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constraints, correlated variables and computational method limitations. Two cur-

rent state-of-the-art machine learning classification techniques, random forests and

kernel-based support vector machines, are utilized to determine these boundaries.

These techniques were chosen based upon their general robustness, applicability in

high dimension and proven utility for solving many different classes of problems with

little known a-priori about the characteristics of the design space [21].

In order to take advantage of the potential for increased effective resolution, al-

luded to in hypothesis 3 through use of a set-based approach, relevant design variables

(those involved in defining the boundary) for each CDFS must be identified. To ac-

complish this, variable importance rankings provided by random forests bound in all

design variables to each CDFS combined with cross validation error minimization will

be used for feature selection. These design variable subsets, unique to each CDFS, will

then be used as the only features with which the CDFS bounding classifiers will be

trained. Then utilizing these set-based boundings, the classification of new candidate

designs can be simultaneously predicted by each of the CDFS bounding classifiers to

provide estimates for cases which have a high probability of being globally feasible or

in the vicinity the boundary. These CDFS bounding classifiers can then be retrained

and refined in successive iterations, utilizing the data from the adaptive samples they

suggested. Such a bounding procedure will continue until resources are exhausted or

satisfaction with the representation of the design space reached.
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CHAPTER V

EXPERIMENTAL RESULTS

The research plan for this thesis is focused around testing all stated hypotheses within

relevant experimental environments and in doing so, seeks to provide a solution to

the overarching research objective. Should this objective be satisfied, the method-

ology proposed within will enable the efficient exploration of large multidimensional

design spaces required for practical aircraft conceptual design problems and provide

a representation of these design spaces superior to any which could be attained from

existing methods for similar computational effort. To guide the development of the

experiments, the overarching research objective is summarized:

Overarching Research Objective Summary:

This thesis seeks a general methodology to provide decision support for

design space exploration for general design spaces through:

� Providing Hypercubic Classification

� Constructing Constraint Defined Feasible Sets

� Bounding NHC Feasible Design Spaces

� Improving Efficiency of DSE Resource Use

In order to test such a methodology and whether it can adequately perform the

above functions, four experiments were devised to examine critical elements within

the methodology and its practical functionality as a whole. Table 4 summarizes these

four experiments and the hypotheses which they test.
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Table 4: Experiment-Hypothesis Summary and Mapping

Experiment Hypothesis Test

I MI is an appropriate Hypercubic Classifier

II Bounding the NHC feasible design space is useful

III Set-Based is superior to Global Bounding

IV Methodology is useful for a practical problem

5.1 Experiment I

5.1.1 Motivation and Thought Experiment

The motivation for this experiment is rooted in the deficiencies highlighted in the

initial efforts to provide Hypercubic classification for the design space given by the

Canonical Example Problem. It was originally posited that observation of character-

istics such as variable correlations or the presence of constraints in the design space

would allow for it to be classified as Non-Hypercubic. While these initial positions

were shown to be correct, they do not encompass the full set of conditions through

which a feasible design space could be made Non-Hypercubic. Furthermore, discov-

ering these attributes this way involved the construction of a design space bounding

and estimation of various correlation coefficients. To address these limitations, a more

general and less expensive means of Hypercubic classification for a design space was

sought. A means of classification was needed that could simultaneously observe cor-

relation (linear and non-linear) between variables, voids, and where constraints (both

known and unknown) were making regions of the space infeasible. The Mutual Infor-

mation (MI) metric has been shown to illuminate various non-uniform features of high

dimensional spaces and was thus selected for investigation as a possible Hypercubic

classifier [45, 52].
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5.1.1.1 Hypothesis 1: Regarding RQ1

If Mutual information is used as a classifier, then for a given design space if the MI

value computed for the feasible region is greater than the MI value computed over

the entire region sampled then the Design Space is Non-Hypercubic.

5.1.2 Experiment Design

In order to verify that MI was an appropriate and robust classifier, multiple design

spaces, both Hypercubic and Non-Hypercubic and of differing dimension and sampling

resolution were examined. For the hypothesis presented in this experiment to be

substantiated, MI must reliably distinguish Non-Hypercubic Spaces from Hypercubic

ones. To provide variety in the design spaces examined, five different methods of

sampling were used to populate the design spaces and 20 separate constraints were

utilized to produce features which could appear in generic design spaces.

5.1.2.1 Apparatus

In order to evaluate the potential for MI to be utilized as a Hypercubic Classifier,

some representative Hypercubic and NHC test design spaces were required. A series

of d-dimensional linear and non-linear constraints were developed which could be

applied to a baseline Hypercubic design space sample of interest to either produce a

reduced Hypercubic or NHC feasible space defined by the designs which satisfied the

given constraint. Each of the constraints were applied numerically (See Appendix for

details) to the baseline Hypercubic design spaces defined for each repetition of each

unique design space sample (combination of settings from the test matrix).

With the test design spaces generated, this experiment now required the estima-

tion of Mutual Information for the numerous design spaces of differing construction,

dimension, resolution and structure. As such a large number of design spaces were

to be evaluated, a computational tool for estimating MI for d-dimensional spaces

with finite samples was sought. Based upon its success in literature in estimating

91



www.manaraa.com

MI values in high dimensions from finite sample sets, the Windows version of the

Mutual Information Least-dependent Component Analysis MILCA was utilized to

compute the MI for each of the unique design spaces [95, 94, 50, 51, 7, 8, 66]. The

‘MIhigherDimension’ function was utilized with default parameters and a k-nearest

neighbors value of 6 for all computations of MI presented within this work. This

function works by applying the kth nearest-neighbor binned mutual information esti-

mation algorithm presented in Kraskov et al. over a set of finite samples in multiple

variables [50].

5.1.2.2 Metrics

Mutual Information for each unique design space was tracked as the primary metric

in this experiment. However, since the number of samples contained within each

DOE is non-infinite, a baseline MI value was calculated for each design space before

constraints were applied to generate the subset of cases that would compose the

feasible space. An MI value was then calculated for this feasible space. To determine

if a design space was Non-Hypercubic, the baseline and constrained MI values were

combined into a single metric called ‘MI Delta’ or MID. In addition, in order to track

the percentage of the design space made infeasible by the application of individual

constraints, a ‘successful case percentage’ SCP metric was was also computed. This

metric when combined with MID could allow for decisions to be made about how

to continue further sampling of the design space. Its consideration is important as

a space may be deemed NHC by MID alone yet if only a small percentage of cases

are actually infeasible, bounded adaptive sampling may not be necessary for future

design space exploration. The metrics for Experiment I are defined as follows:

� Mutual Information Delta MID: the difference between the baseline MI

value for a given unique DOE and the MI value calculated for the cases within

that DOE which remained feasible after a given constraint was applied. If the
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MI delta value is positive (i.e. the MI value of the constrained space is higher

than that of the baseline) then features exist within the design space that make

it Non-Hypercubic.

MID = MIFeasible −MIBaseline (27)

� Successful Case Percentage SCP : the percentage of cases with respect to

the baseline DOE which remained feasible after a given constraint was applied.

This metric can be seen as a measure of the severity of whatever phenomenon

is causing cases to become infeasible within the design space.

SCP =
FeasibleCases

TotalCases
(28)

5.1.3 Experiment Settings and Execution

This experiment requires both Hypercubic and Non-Hypercubic design spaces to be

examined and classified. To be of use as a general classifier, MI must be reliable

not only in detecting the various features which can lead a design space to be non-

Hypercubic, but also be capable of handling design spaces of differing dimension,

resolution and initial sampling methods. For these reasons the following test matrix

was constructed:

5.1.3.1 Test Matrix

� DOE: Pseudo-Monte Carlo PMC, Sobol Sequence with Matousek-Affine-Owen

scrambling SSMAO, Latin Hypercube Sampling LHS, Latin Hypercube Sam-

pling Minimax Optimized LHSMM , Latin Hypercube Reduced Correlation

LHSRC **Note: these particular DOE were chosen to be a representative set

of space filling designs which are popular for computer experiments, as such

these five designs include two ‘random’ designs and three Latin-Hypercubes

with varying degrees of DOE optimization
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� Dimensions (d): 2, 3, 4, 5, 10, 20, 50, 100-PMC Only

� Cases (n): 100, 1000, 10000

� Constraints: Hypersphere HS, Hypersphere 2-D HS2, Reduced Hypercube

Single RHS, Reduced Hypercube Single 1-D RHS1, Reduced Hypercube Mul-

tiple RHM , Reduced Hypercube Multiple 1-D RHM1, Random Removal Fixed

Percentage RRFP , Random Removal n/d RRND, CheckerBoard Coarse CBC,

CheckerBoard Coarse 2-D CBC2, CheckerBoard Fine CBF , CheckerBoard

Fine 2-D CBF2, Linear Constraint Small LCS, Linear Constraint Small 2-D

LCS2, Linear Constraint Large LCL, Linear Constraint Large 2-D LCL2, Non-

Linear Constraint Small NLCS, Non-Linear Constraint Small 2-D NLCS2,

Non-Linear Constraint LargeNLCL, Non-Linear Constraint Large 2-DNLCL2

See Appendix for Details

5.1.3.2 Procedure

The following steps describe the procedure through which MI was calculated for each

of the combinations in the test matrix and how classification judgments were made:

1. Select from the test matrix a unique combination of DOE type, number of

dimensions and number of cases - this defines a design space

2. Generate 60 repetitions of this design space using the sampling method pre-

scribed by the DOE type and save these repetitions

3. For each repetition, save a baseline in which no constraints are applied to the

design space (i.e. no points are classified as feasible or infeasible and are all

kept)

4. For each repetition, individually apply each constraint and save the correspond-

ing feasible design spaces which result
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5. For each repetition, compute the MI value for the baseline

6. For each repetition, compute the MI value for all of the constrained design

spaces

7. For each repetition, compute MID between each of the constrained design spaces

and the baseline design space

8. Compute the mean and standard error of the MID over all repetitions

9. Draw conclusions for that particular type of design space

(a) If the mean MID value > 0 and the lower error bound is >= 0, then the

design space is classified as NHC

(b) If the mean MID value is <= 0 then the design space is classified as

Hypercubic

(c) If the mean MID value > 0 and the lower error bound is < 0, then the

MI classifier test is inconclusive and cannot determine whether the space

is Hypercubic or NHC, more resolution is likely needed

10. Repeat steps 1-9 for all unique combinations within the test matrix

11. Draw final conclusions

5.1.4 Results Discussion

Due to the large size of the test matrix evaluated within this experiment which

amounted to over 2500 unique calculations of MID and SCP, a suitable combination

of variables was sought to collapse the output data against and thus allow general

conclusions to be drawn. Initial analysis of the raw data set illustrated an intuitive

but perhaps not obvious result; the success of MI as a Hypercubic Classifier was de-

pendent upon the resolution at which a given design space was sampled. This makes
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sense as MI is essentially being used, by examining the distributions of the design

variables, to discover or resolve features and structures which exist within the design

space and potentially make it NHC. It follows then that if a design space is ’sparsely’

sampled then these features, should they exist, would be harder to resolve and thus

produce widely varying MID values between repetitions. This trend was roughly

observable in the data as MID values resulting from the application of a particu-

lar constraint (meant to make the design space NHC) grew larger and more closely

distributed between repetitions with an increasing number of cases and decreasing

number of dimensions defining a unique design space. From this it was concluded

that some measure of resolution would likely serve as a good similarity parameter for

the data, but it was not apparent how this ’resolution’ should be represented.

Literature regarding design of computer experiments often suggests the use of

n/d as a measure of sampling resolution to ensure enough cases (n) are allocated

to each dimension (d) to accurately capture behaviors within a design space [55].

This representation of design space resolution was initially tested on the MID output

data, but produced unsatisfactory results. The data showed that design spaces under

the application of the same constraint and with the same n/d values would differ

greatly in MID values (see Fig. 20). From these observations it appeared that the

loss of resolution due to an increase in dimensionality for a given constrained design

space was not made up for by increasing the number of cases required to maintain

the n/d ratio. When explored further, this makes sense as n/d is a criterion often

used to ensure there is enough resolution within the design space to produce accurate

regressions of responses. As a Hypercubic Classifier, MI is meant to resolve features

within the design space, not the response space and thus suffers more from the curse

of dimensionality as the number of design variables increases. This result suggests

that perhaps an appropriate resolution metric for MI as a Hypercubic Classifier of a

given design space should vary exponentially rather than linearly with the number of
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dimensions of the design space in question.

Given the hypothesis that the appropriate resolution metric should likely vary

exponentially with the number of dimensions (d), a concept for design space sampling

resolution was explored which drew inspiration from the construction of Full Factorial

DOE. In the creation of Full Factorial DOE, the number of cases required for the DOE

is defined by the number of levels or settings represented in each design variable and

the number of design variables considered. The number of cases required is computed

as follows:

CasesRequired = (FactorLevels)Dimensions− > n = Ld (29)

Using this formula, for example, a full factorial DOE for 3 design variables with 2

levels each would require 8 cases. This is another way of saying that with these 8

cases, a design space spanned by 3 variables can be resolved at 2 levels per dimension.

While it is necessary to have an integer number of cases and dimensions, it is not

necessarily required to restrict the level of resolution to integer values only. With

this realization, a new resolution concept and similarity parameter, coined ‘Levels

Per Dimension’ or LPD was devised in order to provide a continuous metric for

design space sample resolution, generalized to non-integer values, to represent the

the number of equivalent factor (design variable) levels present within a design space.

LPD is at defined mathematically as follows:

n = Ld− > LPD = n
1
d (30)

To illustrate how LPD differs from n/d as a resolution metric we can look at the

example of a 2-dimensional design space explored by 16 cases. In this example,

the value of n/d is 8 and thus were the design space extended to a 3rd dimension,

to sample this new space with the same resolution under this metric would require

the addition of another 8 cases for a total of 24. The LPD for the original design

space however is equal to 4 and if the design space were similarly extended to a 3rd
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dimension, in order to maintain the same resolution using LPD as a metric would

require the addition of 48 cases for a total of 64.

Utilizing LPD as a resolution measure better reflects the exponential nature of

design space volume growth associated with the extension of the design space to

additional dimensions. Fig. 20 illustrates this as MID is plotted against both n/d

and LPD for two NHC feasible design spaces. In both methods sufficient resolution

is required before the MID values for all DOEs are consistently positive (and thus

indicate the design space is NHC). However, the trend is much more clearly visible

using LPD as the similarity parameter for the data (sampled at multiple different

combinations of DOE type, number of cases and dimensions) collapse more cohesively.

Most importantly, with n/d as the similarity parameter, it is difficult to identify a

critical value of ‘resolution’ after which the structure of the design space is correctly

and consistently classified by MID. Conversely, LPD provides a much clearer picture

of the resolution required to resolve the particular features of these NHC spaces as

after a certain value the data consistently take on a value of MID greater than zero

and ultimately converging to a particular value.

Using LPD as a resolution metric provided a much more appropriate means to view

MID results across the entire test matrix and allowed general conclusions to be drawn

across the entire output data set. For the remainder of this investigation, LPD was

utilized as the metric for resolution and was integral in determining the requirements

for successful implementation of elements of the methodology. The following figures

illustrate the results of Experiment I viewed through the metric MID as a function of

LPD. It is important to note that the LPD values presented represent original LPD

values where the n value used to compute LPD is the number of cases in the baseline

unconstrained design. This convention is used as one would not know a-priori how

many cases would be denied or made infeasible by unknown features existing within

the design space.
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Figure 20: Comparison of n/d and LPD as similarity parameters for the Hypersphere
(HS) and Checkerboard Coarse (CBC) Constraints

Results Interpretation (Figs. 21-40) The following figures illustrate the results

of utilizing MI as a Hypercubic Classifier for all of the unique design spaces specified

in the test matrix. Each separate figure highlights the results for one particular type

of constrained design space described in the figure’s title. The resolution similarity

parameter LPD is plotted on a log scale on the x-axis, with resolution increasing

as LPD increases. MID is featured on the y-axis with a linear scale and indicates

the difference in MI values computed between the baseline unperturbed Hypercubic

design space and the design space which resulted with the application of the particular

constraint. Five different marker types are used to illustrate the results of the different

DOE types tested. The placement of each marker signifies the mean of the MID

results over the 60 replicates examined at a given LPD value while the error bars
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span the standard error about the mean in both directions. A solid red line is plotted

through the PMC data to show how the results behave as the resolution (LPD) is

increased. If the MID values are negative or approximately zero, then the given

design space is classified as Hypercubic. Positive MID values however indicate a

NHC classification. A thick vertical red line is used to indicate the critical LPD value

(tied to the PMC data) after which MI is consistently able to provide the correct

classification (respecting the error about the mean) for the constrained design space

being evaluated. Generally at low sample resolutions (LPD) there is significant noise

in the data and the classifications are unreliable, but as LPD increases, the data

ultimately converge on MID values which provide the correct classification for the

given space.

In order to ensure that MI would not classify Hypercubic design spaces as NHC

and thus provide false positives, the first set of constrained design spaces examined

were Hypercubic. The Reduced Hypercube constrained design spaces (RHS, RHS1,

RHM, RHM1) created infeasible regions within the original design space in such a

way that the remaining feasible space was simply a single hypercube or multiple

hypercubes of smaller hypervolume. Figs. 21 through 24 illustrate the results of the

MID classification tests performed on these spaces. Perhaps the first notable result is

that there does appear to be an effect due to different DOE types. In general, it seems

that the more structure built into the DOE, the more it is affected in terms of MID

with the removal of designs. Because of this perturbation of their original structure,

designs such as SSMAO, LHSMM and LHSRC appear to require more resolution

(higher LPD) to return a MID value near zero and thus properly classify the design

spaces as Hypercubic. Additionally, at low values of LPD (roughly those less than 2),

MID estimates fluctuate significantly between repetitions and do not provide reliable

classification of the spaces. Ultimately however, given enough resolution, MI is able

to consistently classify the design spaces as Hypercubic for all DOE types.
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Figure 21: MI Classification Results for Reduced Hypercubic Singular (RHS) Design
Spaces

When comparing the differences between the MID results for the design spaces

which were subject to the constraints in all dimensions (Figs. 21 and 23) against those

that only had the constraints applied to a singular dimension (Figs. 22 and 24) it

appears that the spaces subjected to constraints in only one dimension were slightly

easier to resolve and could be classified as Hypercubic at lower LPD values. This

result is perhaps explained by the fact that a constant volume (and thus approximate

number of designs) was denied from all of these spaces and therefore is more visible

in the singular dimensions to which it was applied in Figs. 22 and 24. This trend

appears to continue for the other constrained design spaces although the effect is

slight. In general, if a given volume is constrained within a hyperspace, the fewer

dimensions which are affected, the lower the resolution (LPD) required to classify the

space as Hypercubic or NHC using MI.

The next set of spaces to be examined in the experiment were also Hypercubic.
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Figure 22: MI Classification Results for Reduced Hypercubic Singular 1-D (RHS1)
Design Spaces

The constraints applied to these spaces did not reduce the hypervolume spanned by

the design space but rather randomly removed designs throughout the space in order

to simulate random failures. The application of these constraints did not introduce

NHC features within the spaces. The RRFP constrained space was subjected to a

random removal of a fixed 10 percent of the designs within each initial DOE, while the

RRND constraint sought to remove as many cases necessary to maintain some n/d

value (either 20, 30 or 50) between trials. Perhaps most noticeable is that the RRFP

constrained design spaces (Fig. 25) converge to a Hypercubic Classification at much

lower resolution than the RRND spaces (Fig. 26). This is because while the RRFP

design spaces lose 10 percent of their cases, the RRND spaces must remove a much

larger fraction of cases (in some cases over 90 percent) to maintain a given n/d ratio.

Similarly to the design spaces subjected to the reduced hypercube constraints, the

more structured DOEs appeared to have larger perturbations in MI values due to the
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Figure 23: MI Classification Results for Reduced Hypercubic Multiple (RHM) Design
Spaces

removal of designs throughout the spaces. While the PMC DOEs (pseudo-random

with no structure) converge to the zero MID value expected for these Hypercubic

spaces at a critical LPD value less than 2, structured DOE types such as SSMAO

and LHSMM require much more resolution to ultimately correctly classify the design

spaces as Hypercubic.
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Figure 24: MI Classification Results for Reduced Hypercubic Multiple 1-D (RHM)
Design Spaces

Figure 25: MI Classification Results for Hypercubic Design Spaces Subject to Ran-
dom Removal of a Fixed Percentage (RRFP) of Designs

104



www.manaraa.com

Figure 26: MI Classification Results for Hypercubic Design Spaces Subject to Ran-
dom Removal of Designs to Maintain an n/d Ratio (RRND)
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Figures 27 through 30 represent the results of MI tested as a Hypercubic Classifier

on the first set of Non-Hypercubic constrained design spaces. These constrained

design spaces featured linear constraints which eliminated 5 or 20 percent of the

cases from the baseline design space in two (LCS2 and LCL2) and all dimensions

(LCS and LCL). The first important trend observable in this set of results is that

the MID data ultimately converge to a positive value for all of the design spaces

once sufficient LPD is reached. This result serves as substantiation that MI can

properly classify these spaces as NHC given sufficient resolution. Examining the

results further it is clear that the constrained design spaces subjected to the large

linear constraints (LCL and LCL2) ultimately converge to a higher MID values than

the spaces subjected to the small linear constraints (LCS and LCS2). This seems

to suggest that the spaces subjected to the large constraints, and thus featuring a

larger percentage of the space denied by the constraints, are ‘more’ NHC than the

LCS and LCS2 design spaces. Because of this, the data also appear to show that a

‘more’ NHC design space requires less resolution to properly classify as NHC. This is

evident in the lower critical LPD values after which both the LCL and LCL2 design

spaces have MID values consistently greater than zero. These results support the

logical conclusion that design space features which affect larger volumes of the design

space will be easier to detect using MI as a Hypercubic Classifier.
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Figure 27: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Linear Constraints (LCS) Denying a Small Volume of the Feasible Space

Figure 28: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Linear Constraints 2-D (LCS2) Denying a Small Volume of the Feasible Space
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Figure 29: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Linear Constraints (LCL) Denying a Large Volume of the Feasible Space

Figure 30: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Linear Constraints 2-D (LCL2) Denying a Large Volume of the Feasible Space
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Similar trends again appear in the MI classification results when examining the

non-linearly constrained design spaces (Figs. 31-34). In support of hypothesis 1, the

data do indicate that MI provides proper classification of these design spaces as NHC

once the resolution necessary to resolve the NHC features present is achieved within

the hypervolume. Again, the design spaces subjected to the constraints which deny a

larger fraction of the total hypervolume appear to be ‘more’ NHC which is reflected

in higher MID values and a lower resolution required to definitively classify the spaces

as NHC. In comparison with the linearly constrained design spaces the non-linearly

constrained spaces interestingly appear to converge to similar MID values at large

values of LPD. This result suggests that the ultimate MID value attained as the

density of points within the original hypervolume approaches infinity may be heavily

correlated with the volume of the hypervolume denied by the constraint or set of

constraints which make the space NHC. This conclusion seems to make sense as in

the limit if a set of variables were perfectly correlated, a very high MI value would

result and the feasible design space would collapse to a line in d-dimensions of zero

bounded volume.
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Figure 31: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Non-Linear Constraints (NLCS) Denying a Small Volume of the Feasible Space

Figure 32: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Non-Linear Constraints 2-D (NLCS2) Denying a Small Volume of the Feasible Space
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Figure 33: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Non-Linear Constraints (NLCL) Denying a Large Volume of the Feasible Space

Figure 34: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Non-Linear Constraints 2-D (NLCL) Denying a Large Volume of the Feasible Space
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The next set of constrained design spaces (Figs. 35-36) examined with MI as a

Hypercubic Classifier featured hypersphere removal constraints which produced voids

the center of the design spaces. These voids represented approximately 20 percent of

the hypervolume bounded by the baseline Hypercubic space. This infeasible volume

created by the constraints was the same percentage used for both the large linear

and large non-linear constrained design spaces and as such appears to follow the

similar trend of ultimately converging to an MID value of approximately 0.15 at high

LPD values. A difference is again seen between the constraint applied in only two

dimensions as opposed to all dimensions as it appears that the 2-D case (Fig. 36)

produces a more consistent trend beginning with lower values of LPD (i.e. the data are

not as dispersed about the MID = 0 line at low LPD values). This is perhaps because

it is easier for MI to begin to solicit the relationship between this small subset of the

design variables with low LPD as opposed to determining the correct relationship

between all variables at similar LPD values. Interestingly enough however, as LPD

is increased the MID value appears to increase more quickly for the spaces in which

the hypersphere removal constraint is present in all dimensions.
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Figure 35: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Hypersphere Removal (HS)

Figure 36: MI Classification Results for Non-Hypercubic Design Spaces Subject to
Hypersphere Removal in 2-D (HS2)
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The final set of constrained design spaces examined to evaluate the feasibility

of MI as a Hypercubic Classifier were highly degenerate (likely unnatural) design

spaces which produced regions of infeasibility within the design spaces according to

a checkerboard pattern. As such, these spaces constructed significant correlation be-

tween design variables and thus formed NHC spaces. In all of these constrained design

spaces, half of the total baseline hypervolume was made infeasible by the constraints.

In the Coarse Checkerboard (CBC and CBC2, Figs. 37-38 respectively) constrained

design spaces only two bins or checkers per dimension were used while for the Fine

Checkerboard (CBF and CBF2, Figs. 37-38 respectively) constrained spaces featured

ten bins per dimension. It is important to note that although the feasible regions de-

marcated by the individual bins of these design spaces are indeed Hypercubic, these

spaces differ from the reduced hypercube spaces in that the entirety of their feasible

regions cannot be bound (without excluding feasible regions) by simply modifying the

ranges of the design variables. Perhaps what is most apparent when examining these

results is that these constrained design spaces attained the highest MID values when

the data ultimately converged at the higher LPD values. This follows the trend ob-

served in the previous NHC constrained spaces which shows an increase in MID value

with an increase in the volume denied within the design space by the constraints.

The next but more important conclusion to be drawn from this set of results can

be observed through the difference between the Coarse and Fine Checkerboard con-

strained design spaces. The Coarse Checkerboard constrained design spaces required

very little resolution for MI to determine that these spaces are indeed NHC. This

makes sense as 50 percent of the design space is denied by the constraints which also

happen to produce a large correlation between design variables (this is a hard feature

to miss). However, in the case of the Fine Checkerboard constrained design spaces,

the MI classifier, by means of MID values remaining near zero for a significant range

of LPD values, is not able to resolve the NHC nature of the design space until an
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LPD of 10 or higher is attained within the space. This result is perhaps the clearest

evidence of the importance of resolution for using MI as a Hypercubic Classifier. Be-

cause the CBF and CBF2 spaces had finer NHC features (10 bins in each dimension)

it required many more cases spread throughout the design space to resolve the struc-

ture of these particular constraints and reject the null hypothesis that the infeasible

cases dispersed throughout are simply random in nature. It is also important to note

that while an LPD of 10 is quite significant (10,000 cases in only 4 dimensions) for a

mid-large number of design variables and thus MI seems of limited use as a classifier

in this case, the CBF and CBF2 spaces represent highly degenerate cases unlikely to

be encountered in constrained design spaces for physics-based applications.

Figure 37: MI Classification Results for Non-Hypercubic Design Spaces Subject to
a Coarse Checkerboard Constraint (CBC)
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Figure 38: MI Classification Results for Non-Hypercubic Design Spaces Subject to
a Coarse Checkerboard Constraint 2-D (CBC2)

Figure 39: MI Classification Results for Non-Hypercubic Design Spaces Subject to
a Fine Checkerboard Constraint (CBF)
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Figure 40: MI Classification Results for Non-Hypercubic Design Spaces Subject to
a Fine Checkerboard Constraint 2-D (CBF2)
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5.1.5 Conclusions and Consequences

Experiment 1 was performed to evaluate the utility of Mutual Information (MI) as a

Hypercubic Classifier. MI was computed for unique design spaces defined by a large

test matrix consisting of multiple DOE types, number of dimensions and number of

cases per design space. To introduce features within the spaces which would result in

either Hypercubic or NHC design spaces, 20 separate constraints were applied to each

unique baseline design space created from the test matrix. To test the hypothesis that

MI could serve as a Hypercubic Classifier, MI values were computed for each unique

baseline unconstrained design space and then again for the 20 constrained variants of

that space. This process was repeated for 60 replicates for each unique space. These

MI results were combined through a metric termed ‘Mutual Information Delta’ or

‘MID’ (Eqn. 27).

Under the original procedure of the experiment, a space was to be classified as

Non-Hypercubic if the mean MID value minus the lower bound of the standard error

about the mean over all the replicates was greater than zero. Conversely a space

would be deemed Hypercubic should the MID mean including standard error not

depart from zero. Through the course of the experiment it was found that MI could

provide such classifications and do so accurately for both the Hypercubic and NHC,

but only with the caveat that sufficient resolution existed within the hypervolume to

resolve the features imposed by the constraints.

Because of this resolution requirement for MI to provide accurate Hypercubic

Classification, a similarity parameter was sought to collapse the data observed in all

of the design spaces examined of differing number of dimensions and number of cases.

First tested was n/d, a common similarity parameter utilized to ensure computer ex-

periments have sufficient resolution to produce accurate regressions. However as the

hypervolume defined by the design spaces increased exponentially with the addition
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of dimensions this similarity parameter proved ill suited toward establishing a crite-

rion for the resolution required to resolve NHC features within d-dimensional design

spaces. To address the gap a new similarity parameter coined ‘Levels Per Dimension’

or ‘LPD’ (Eqn. 30) was devised.

This new similarity parameter was compared against n/d and found to be much

more appropriate for determining threshold resolution values beyond which MI could

be used as a reliable Hypercubic Classifier. Using LPD as a measure of metric it was

discovered that the larger a NHC feature was, i.e. the more volume that was denied

by the constraint in the original Hypercubic space, the less resolution required to

resolve the space as NHC. Interestingly enough, the type or shape of the constraint

(linear, nonlinear, void, etc.) was not as significant for classification purposes as the

volume denied, or corresponding number of cases made infeasible, by the constraint.

Also revealed by the experiment was the effect that different types of space filling

DOE approaches had on the ultimate MI classification results. Although all DOE

types tested were space-filling in nature, certain designs were perhaps more appropri-

ate for use with the MI classifier than others. Observed especially with the SSMAO

and LHSRC based design spaces, these more structured designs could lead to incor-

rect conclusions as cases were removed unless these conclusions were drawn at really

high resolution (LPD). This is likely because even random removal of cases within

these design spaces greatly affected the distribution of cases within the space and

thus manifested as large MID values. As such, these types of design spaces tend to

provide false positives by classifying Hypercubic spaces as NHC, unless LPD is very

high. This effect is less pronounced in DOE types which are closer to ‘true’ random

and independent dispersal of cases such as PMC. This result is important as it shows

that these space-filling design types are all compatible with using MI as a Hypercubic

Classifier, yet their selection greatly affects the resolution required for MI to return

a correct classification of the design space. The following table (Table 5) indicates
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the approximate critical resolution expressed in LPD value (with a tolerance of ±0.01

in MID with error about zero) after which each constrained design space could be

correctly classified using MI.

Table 5: Critical LPD Values Required to Correctly Classify Design Spaces Using
Mutual Information

Design Space Characteristics Critical LPD Values by DOE Type

Constraint ID SCP PMC SSMAO LHS LHSMM LHSRC

RHS 0.80 2.512 100.000 4.642 4.642 6.310

RHS1 0.80 1.413 100.000 3.981 3.981 6.310

RHM 0.80 1.413 21.544 1.995 3.981 6.310

RHM1 0.80 1.259 21.544 1.995 3.981 6.310

RRFP 0.90 1.413 31.623 1.995 6.31 6.310

RRND 0.01 - 0.60 31.623 N/A N/A N/A N/A

LCS 0.95 3.981 1.202 3.162 1.995 2.512

LCS2 0.95 3.981 1.202 3.162 1.995 2.512

LCL 0.80 1.995 1.202 1.995 1.995 1.995

LCL2 0.80 1.995 1.202 1.413 1.585 1.096

NLCS 0.95 3.981 1.202 1.995 1.995 1.995

NLCS2 0.95 1.995 1.995 3.162 3.981 3.981

NLCL 0.80 1.995 1.202 1.413 1.585 1.096

NLCL2 0.80 1.096 1.096 1.202 1.413 1.148

HS 0.80 1.995 1.995 1.995 1.995 1.995

HS2 0.80 1.995 1.202 2.512 1.995 1.995

CBC 0.50 1.995 1.202 2.512 1.995 2.512

CBC2 0.50 1.096 1.096 1.202 1.096 1.096

CBF 0.50 10.000 5.623 10.000 10.000 10.000

CBF2 0.50 10.000 5.623 10.000 10.000 10.000

A few conclusions can be drawn from this set of tabulated data. Firstly, regarding
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DOE selection, structured designs can be problematic for use in MI Hypercubic Clas-

sification. While more structured DOE types such as SSMAO, LHSMM and LHSRC

may require in general lower critical LPD values to correctly classify the NHC spaces,

they require a great deal of resolution in order to correctly classify the Hypercubic

spaces. This means should they be used for classification they may lead the user to

believe almost any design space with a SCP less than 100 percent to be NHC. There-

fore, while the PMC DOE type has higher critical LPD values in order to resolve

NHC spaces compared to these designs, it is much less likely to generate false posi-

tive results when used to classify Hypercubic spaces. Secondly, with the PMC DOE

type it appears that features in a reduced number of dimensions can be resolved at

lower LPD values than their all-dimensions counterparts. This trend is not consistent

across DOE types however. Lastly, it appears that non-linear constraints or features

were more difficult to resolve than linear constraints which yielded the same SCP, yet

SCP itself was a major driver in critical LPD. This reflects the earlier observation

that the greater the volume of the space denied by a NHC feature, the ‘more’ NHC

the space is and thus the easier it is for MI to provide correct classification at lower

resolution.

Ultimately the results of Experiment 1 substantiate Hypothesis 1 and illustrate

that Mutual Information (MI) is an appropriate Hypercubic Classifier. This state-

ment is bound however by the requirement that the space be sampled with sufficient

resolution, quantified in this experiment through equivalent Levels Per Dimension

(LPD), to resolve whatever features may exist within the space. The question of

what LPD is needed is not a trivial one and is dictated by the type of DOE used to

sample the space as well as the shape and volume of features that exist within the

space. Table 5 provides guidance in selecting this required LPD, however in general,

the largest resolution which is affordable should be used should LPD available be less

than 2.
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5.2 Experiment II

5.2.1 Motivation and Thought Experiment

As a means to classify a given design space as Hypercubic or NHC was established

through the results of Experiment I, the next logical question was how can such

information be leveraged to improve the understanding and future exploration of

this space? The focus of this experiment is therefore to ascertain whether having a

bounding of the design space, constructed from knowledge obtained with an initial

design space exploration, is beneficial when revisiting the design problem. While this

experiment may seem able to be proven by logic alone, depending on the shape of

the Non-Hypercubic design space and the quality of the bounding generated, such

a conclusion may not be so trivial. Furthermore, should the design space lack suffi-

cient LPD in its initial sample, a bounding constructed from such information may

incorrectly infer non-existent characteristics within the space.

In order to test hypothesis 2, multiple Non-Hypercubic design spaces of differ-

ent shapes, characteristics and dimensions were initially sampled and bound. They

were then re-explored with and without the use of their respective boundings. Two

competing methods for repeat design space exploration were evaluated within this ex-

periment. The first method meant to provide a baseline respective of current practices

is termed All At Once AAO sampling in which no changes are made to the structure

of the DOE between the initial sample and the final sample. This approach is equiv-

alent to a DOE in which all samples were taken initially. The second method, termed

Bounded Adaptive Sampling BAS, leverages a bounding for targeted re-sampling of

the design space after the initial sampling has been performed. The hypothesis that

a bounding is generally beneficial is considered substantiated if and only if the use

of a bounding in each case allows for the more efficient re-exploration of the design

space.
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5.2.1.1 Hypothesis 2: Regarding RQ2

If a bounding is constructed using sufficient resolution to resolve the features present

within a Non-Hypercubic design space, then it can be leveraged to enable more re-

source efficient future exploration of the space.

5.2.2 Experiment Design

In order to confirm that the use of a bounding for the feasible space would aid in

adaptive sampling of design spaces, multiple NHC spaces of differing dimension and

sampling resolution were examined. For the hypothesis presented in this experiment

to be substantiated, the BAS approach (when provided sufficient resolution) must

reliably outperform the AAO sampling without being prohibitively expensive in terms

of computational resources. To provide variety in the design spaces examined, PMC

sampling was used to populate the baseline design spaces which were then made

NHC by the application of 14 separate constraints which produced features which

could appear in generic design spaces.

5.2.2.1 Apparatus

To determine if a BAS approach was useful in enabling further DSE of NHC spaces,

some representative NHC test design spaces were again required. As only NHC

constrained design spaces were needed for this experiment, only the constraints which

would yield NHC feasible design spaces were utilized. Again, these specific constraints

were applied numerically (See Appendix for details) to the baseline Hypercubic design

spaces defined for each repetition of each unique design space sample (combination

of settings from the test matrix). These constraints would be queried again once

adaptive samples had been generated with the use of the bounding classifiers to

determine which designs among the adaptive samples were feasible with respect to

the relevant constraint.

As this experiment was meant to examine the utility of using a bounding of a

123



www.manaraa.com

feasible design space for adaptive sampling purposes, a means of constructing such

a bounding was necessary. The specifics of the bounding method were largely unim-

portant for this experiment. Any type of method used to enable bounded adaptive

sampling (BAS) was sufficient to simply compare against the common approach of

performing design space exploration all at once (AAO) with a DOE which disperses

the entire case budget throughout the Hypercubic design space defined by the lim-

its on the design variables. As such, the randomForest package implemented in the

statistical programming language R was utilized to construct random forest (RF) clas-

sifiers for the purpose of bounding feasible design spaces for this experiment [83, 23].

RF was selected as the bounding method for this experiment due to its ease of im-

plementation, interpretation and speed of fitting within R. A unique random forest

classifier was fit for each unique constraint defined feasible set, however all of the

random forests were composed of 2000 different decision trees.

5.2.2.2 Metrics

As the ORO seeks a resource efficient bounding of the feasible design space, it was

necessary to track some measure of the computational expense required to construct

and use such a bounding. This measure could be utilized to then to quantify the

cost increase compared to sampling BAU without a bounding for the feasible space.

Furthermore, a measure of the benefit provided by the use of the BAS to guide DSE

was also desired to justify its adoption. Therefore, two metrics were utilized in this

experiment for the purposes of assessing the efficiency of the two competing methods

for repeat design space exploration. They are as follows:

� Method Execution Time MET : the computational time (measured in sec-

onds) required for the respective methods to generate their required elements.

For the AAO case, this will only include the time required to create the sam-

pling DOE (PMC sample set). For the BAS case also included will be the time
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required to create the bounding and the time required to create the bounding

influenced sample set.

� Feasible Design Ratio FDR: the ratio of feasible designs obtained within the

sample set to the total number of design evaluated within the sample set. This

metric measures how successful each sampling method is at returning feasible

designs.

5.2.3 Experiment Settings and Execution

This experiment required Non-Hypercubic design spaces to be evaluated and bound.

However, as the shape and characteristics of the design space to be evaluated are

often not known a-priori, it was important to evaluate a number of different design

spaces to show the general applicability of the hypothesis. For this reason, multiple

design spaces were be tested in this experiment and these tests replicated to reduce

random error. Design space shapes and characteristics desired for testing were as

follows: slightly Non-Hypercubic, highly Non-Hypercubic, discontinuous, convex and

non-convex. In an attempt to remove the influence of sample set structure, PMC

sampling was used for all design spaces and the sample size was varied for different

trials. A reduced test matrix from that featured in Experiment I was used to define

a unique design space for each trial, it is enumerated below:

5.2.3.1 Test Matrix

� DOE: Pseudo-Monte Carlo (PMC)

� Dimensions (d): 2, 3, 10, 20, 50

� Cases (n): 100, 1000

� Constraints: Hypersphere (HS), Hypersphere 2-D (HS2), CheckerBoard Coarse

(CBC), CheckerBoard Coarse 2-D (CBC2), CheckerBoard Fine (CBF), Checker-

Board Fine 2-D (CBF2), Linear Constraint Small (LCS), Linear Constraint
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Small 2-D (LCS2), Linear Constraint Large (LCL), Linear Constraint Large 2-

D (LCL2), Non-Linear Constraint Small (NLCS), Non-Linear Constraint Small

2-D (NLCS2), Non-Linear Constraint Large (NLCL), Non-Linear Constraint

Large 2-D (NLCL2) (See Appendix)

5.2.3.2 Procedure

While ensuring sufficient replications were included to have confidence in the results,

it was desired to minimize the number of replications for each trial, as each additional

replication required the training of an additional bounding classifier. To quote Gauch,

“Replication is one of the finest ideas in science, but it faces a severe law of diminishing

returns” [27]. Choosing 10 replications per trial, allowed for the observed result

to be more accurate than a single observation 80.5 percent of the time. This was

deemed sufficient to capture the general behavior of the bounding classifiers and

observe, with reasonable confidence, if a BAS approach was superior to sampling

AAO. For each replication, a bounding was constructed using information from the

initial design space exploration as training data. The space was then be re-explored

for each replication following both AAO and BAS practices. Metric values were

then computed for both the AAO and BAS approaches and compared. The mean

value of the metrics over all 10 replications allowed conclusions to be drawn about

the superior method for design space re-exploration for those trial settings. The

enumerated procedure is as follows:

1. Select from the test matrix a unique combination of number of dimensions and

number of cases - this defines a design space

2. Generate 10 replications of this design space using PMC sampling

3. For each replication, individually apply each constraint and save the correspond-

ing NHC feasible design spaces which result in a series of constraint defined

feasible sets (CDFS)
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4. compute the FDR for these constrained initial samples (what is the ratio of

feasible cases to total cases for each constraint defined feasible set)

5. Using the initial sample as a training set, fit a random forest classifier to con-

struct a bounding for each constraint defined feasible set and then use this clas-

sifier to suggest another n cases it predicts will be feasible within this bounding

6. For the baseline sample, simply randomly select another n points (effectively

ignoring the presence of the constraint, this simulates the business as usual

practice of a random resampling or simply expending the entire budget All At

Once AAO)

7. Re-explore the design space using these new sample sets performing both BAS

and AAO and evaluate the FDR for each

8. Average and record the MET and FDR across all of the 10 replications for both

the AAO and BAS enabled re-sampling of the design space

9. Repeat steps 1-8 for each unique design space (unique combinations form the

test matrix)

10. Draw final conclusions

In order to draw final conclusions in this experiment for each unique design space,

the successful percentage of cases in the new sample resulting from AAO vs. BAS

were compared. The hypothesis was considered substantiated if BAS consistently

provided a higher successful percentage (FDR) than AAO in the new samples.

5.2.4 Results Discussion

The first result to emerge from experiment 2 concerning the MET was important

if underwhelming. Table 6 summarizes the MET breakdown for the two competing

methods of sampling the feasible design spaces. Although quantifiable, the difference
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in MET between AAO and BAS within this experiment is considered negligible.

This is nevertheless a significant result as it demonstrates that the computational

resource expenditure required to use the methodology (and construct boundings for

high-dimensionsal design spaces) may not be prohibitive. The boundings constructed

in this experiment are simplified versions of what would likely be used in practical

applications, however this result shows that at least in these cases, the performance

of BAS itself was not a showstopper. To provide a hardware benchmark, these tests

were performed on a system running 64-bit Windows 10 with an Intel Core i7-4790k

processor at 4.00 GHz with 16 GB of RAM.

Table 6: Summary of Method Execution Time (MET) Required for AAO and BAS

Training of Bounding Classifier Generation of New Points

Sampling Method min time (s) max time (s) min time (s) max time (s)

AAO N/A N/A 0.000 0.006

BAS 0.067 11.270 0.000 1.306

Results Interpretation (Figs. 41-54) The reduced test matrix utilized in experi-

ment 2 produced 10 distinct baseline design spaces ranging in initial sample resolution

from LPD values of 1.10 to 31.64. Figures 41-54 illustrate the results of the AAO

vs. BAS tests performed on these spaces measured in the difference in FDR between

AAO and BAS. Two horizontal reference lines are included in each of the figures to il-

luminate the possible range of FDR improvement. The upper reference line is defined

by the amount of baseline design space volume denied by the given constraint the

space is subject to while the lower line represents a net zero improvement over AAO.

If the FDR delta was positive (above the zero reference line in the figures) for a given

design space then there was a greater number of feasible cases achieved in the second

sample set through the use of BAS. This type of result would indicate that the use

of a bounding to further explore the feasible design space was beneficial. If the FDR
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delta approaches the upper reference line then the BAS method is suggesting almost

entirely feasible cases, suggesting that the bounding fit to the feasible design space

may be accurate. It is important to note however that a FDR approaching unity

does not itself guarantee bounding accuracy. For example, a conservative bounding

for the space could have been constructed which while eliminating most false positive

suggestions for feasible designs may reject many truly feasible designs as false nega-

tives. The variance which can be observed in the box plots illustrates variability in

both the unique PMC designs over the the ten replicates for each constrained design

space type and the bounding RF classifiers fit to them. This variance is generally

seen to decrease with increasing resolution as the PMC replications more closely re-

semble each other in terms of design case distribution throughout the design space

with a denser sample. Additionally, with increasing resolution, the RFs fit to each

replication generally begin to better represent the true boundary and thus also begin

to more closely resemble one another. However, as LPD is not a perfect measure of

resolution this trend is not always monotonic. Additionally, some very low variances

in results near zero FDR delta can be seen at very low resolution. This is indicative

that the RFs fit for these spaces are so inaccurate that they classify nearly every point

within the space as feasible and thus hardly differ from AAO sampling results.

The first NHC design spaces examined in this experiment were those whose cor-

responding feasible spaces were determined by linear constraints (LCS, LCS2, LCL,

LCL2). Figures 41-44 depict the improvement in FDR gained through performing

BAS over AAO for design spaces sampled with differing resolutions measured in

LPD. It is important to note that while a valuable similarity parameter, LPD is not

a perfect measure for resolution as can be seen in these plots. Two separate design

spaces have an LPD equal to 10 (n = 100, d = 2 and n = 1000, d = 3) yet the results

for these distinct spaces differ even though their LPD does not. In general, for design

spaces with similar LPD values, the space with the higher n/d allows for features
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to be resolved more easily and thus tends to have more accurate boundings for the

feasible space. This result is perhaps obvious but interesting nonetheless, suggesting

that resolution might be best represented by tracking both LPD and n/d.

Figure 41: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Linear Constraints (LCS) Denying a Small Volume of the Feasible Space

Again, similar to the use of MI as a classifier, resolution plays an important

role in determining whether or not a bounding constructed from an initial sample

of a constrained design space and then used for adaptive sampling will provide an

advantage over the common practice of sampling AAO. Figures 41 and 43 illustrate

that an LPD of 2 or higher is needed for a bounding to be constructed with sufficient

accuracy to improve the FDR using BAS over that which could be achieved with

AAO sampling. For the design spaces subjected to constraints only in two dimensions

however (Figs. 42 and 44), a beneficial bounding can be constructed at much lower

resolution. It is also very important to observe that perhaps contrary to intuition,

using a bounding may actually be worse in some situations than sampling blindly
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Figure 42: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Linear Constraints 2-D (LCS2) Denying a Small Volume of the Feasible Space

following AAO practices. This result only appears in cases where the design space

was sampled with very low resolution and thus an inaccurate bounding is constructed

for BAS, yet it clearly illustrates that using a bounding does not always provide a

superior way of sampling.
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Figure 43: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Linear Constraints (LCL) Denying a Large Volume of the Feasible Space

Figure 44: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Linear Constraints 2-D (LCL2) Denying a Large Volume of the Feasible Space
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Similar trends emerge when examining the results for the Non-Linearly con-

strained design spaces. Interestingly, these spaces seem to have slightly more accurate

boundings for the same LPD over their linearlu constrained counterparts. This makes

sense as the decision trees composing the random forests constructed as boundings

for these spaces would be able to approximate the non-linear constraint with greater

accuracy with a given number of branches. Another interesting effect, seen most

prevalently in the 2-D constrained design spaces (Figs. 46 and 48), is that n/d in

addition to LPD seems to be driving the accuracy of the boundings and thus their

effectiveness in suggesting new feasible designs. This effect is likely arising due to the

fact that for a 2-D constrained design space a relevant bounding need only be fit to

the two NHC dimensions. Thus a higher dimensional space can be seen as effectively

collapsed from the point of view of the bounding classifier and thus the LPD is ar-

tificially increased due to the collapse of these dimensions. It is important to note

that these dimensions do not disappear, they are simply irrelevant for the bounding

and thus the NHC design space can be thought to collapse to a 2-D space in the two

NHC variables.
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Figure 45: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Non-Linear Constraints (NLCS) Denying a Small Volume of the Feasible Space

Figure 46: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Non-Linear Constraints 2-D (NLCS2) Denying a Small Volume of the Feasible Space
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Figure 47: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Non-Linear Constraints (NLCL) Denying a Large Volume of the Feasible Space

Figure 48: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Non-Linear Constraints 2-D (NLCL2) Denying a Large Volume of the Feasible Space
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The FDR improvements as a result of BAS for the design spaces subject to hy-

persphere removal seem to lie in-between the results for the linearly and non-linearly

constrained spaces. Again, this could be due to the nature of the random forest clas-

sifier used to construct boundings and the ease at which it can approximate features

that exist within a space. Resolution still plays a very important role and it is still

clear that a bounding can produce a net negative result compared to AAO sampling

at very low resolution values.

Figure 49: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Hypersphere Removal (HS)
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Figure 50: Effects of Bounded Adaptive Sampling for Design Spaces Subject to
Hypersphere Removal in 2-D (HS2)
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The trends remain evident when examining the Checkerboard Constrained de-

sign spaces, yet the jump in FDR once sufficient resolution was attained was much

more pronounced. This effect is again likely due to the use of random forests as

the bounding classifiers as decision trees are particularly apt at resolving the shapes

formed by the checkerboard constraints. Another trend may also be observed looking

back at the critical LPD values presented in Table 5. In all of the figures, a net

positive result in FDR improvement over AAO sampling can be seen for resolutions

above the corresponding critical LPD values for the constrained PMC design spaces.

This makes sense as MI needed these resolutions to resolve features within the de-

sign spaces, so must a bounding classifier require similar resolution to make informed

guesses concerning the boundaries of feasible design space regions.

Figure 51: Effects of Bounded Adaptive Sampling for Design Spaces Subject to a
Coarse Checkerboard Constraint (CBC)
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Figure 52: Effects of Bounded Adaptive Sampling for Design Spaces Subject to a
Coarse Checkerboard Constraint 2-D (CBC2)

Figure 53: Effects of Bounded Adaptive Sampling for Design Spaces Subject to a
Fine Checkerboard Constraint (CBF)
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Figure 54: Effects of Bounded Adaptive Sampling for Design Spaces Subject to a
Fine Checkerboard Constraint 2-D (CBF2)
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5.2.5 Conclusions and Consequences

Experiment 2 was performed to evaluate the potential benefit of utilizing a bounding

for a NHC design space to perform adaptive sampling and thus reduce the computa-

tional burden when exploring these spaces. This approach termed Bounded Adaptive

Sampling BAS was compared against the traditional approach of sampling All At

Once AAO within a bounding hypercube defined by the limits on the design variables

spanning the space. Two metrics were used to measure and compare the performance

of these two methods: Method Execution Time MET and the Feasible Design Ratio

FDR. While the MET difference was found to be effectively negligible for the de-

sign spaces evaluated and bound, examining the difference in FDR between the two

approaches yielded interesting results.

The FDR was computed for unique NHC design spaces defined by a test matrix

consisting of multiple PMC DOEs defined by differing numbers of dimensions and

cases per design space. FDR was computed for the AAO cases and then for the new

samples produced by the BAS approach. To suggest these new samples the BAS

approach constructed random forest classifiers from initial sample sets in each of the

constrained design spaces. These classifiers were then queried to produce a set of new

samples they believed would be feasible.

It was initially hypothesized that using any kind of bounding at all and hence

leveraging information about the design space would lead to a better rate of return

when re-sampling a design space. However, through the experiment it quickly became

apparent that akin to experiment 1, the resolution at which the space was initially

sampled was hugely important in determining the success of any bounding and adap-

tive sampling approach attempting to leverage design space information. In instances

where the resolution (measured in LPD) was very low, the BAS approach performed

poorly and at times worse than the traditional AAO sampling. Interestingly, similar

LPD values to those seen in Table 5 were required to begin to resolve features within
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the design space and begin illustrating a positive benefit associated with performing

BAS over AAO sampling.

Additionally, the experiment revealed that a higher dimensional space, with only

a subset of its dimensions being NHC, can be seen as effectively collapsed from the

point of view of a bounding classifier for the NHC regions. This means that when

constructing a bounding for the NHC design space LPD is artificially increased due

to the collapse of Hypercubic dimensions. While these dimensions do not disappear,

they are simply irrelevant for the NHC bounding and thus the design space (for BAS

purposes) can be thought to collapse to a lower dimensional space in only the NHC

variables. This powerful result has the potential to allow high dimensional NHC de-

sign spaces (where only a subset of the dimensions are NHC) to be successfully bound

and explored with significantly lower resolution (LPD) than the previous experimental

results otherwise seem to require.

Ultimately, experiment 2 was able to show that if a bounding is constructed using

sufficient resolution to resolve the features present within the NHC design space, then

it will provide an advantage for future exploration of the space. Thus, hypothesis 2

was considered substantiated. With this conclusion, the next step was to determine

how to best perform this BAS for practical problems of interest in which the achieve-

ment of high LPD is less likely and the construction of accurate boundings a little

less straightforward.

5.3 Experiment III

5.3.1 Motivation and Thought Experiment

Experiment 2 established that a bounded feasible design space is generally helpful

for future exploration, but the question remained how should this bounding be con-

structed? The ultimate goal is to determine an accurate representation of the global

feasible design space. Experiment 3 was created to evaluate the two main options for
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constructing this representation. The investigation was meant to determine whether

a bouding should simply be constructed for this global space, or if it is perhaps more

advantageous to use Set Based Design SBD Principles to fit individual constraints

and then find a global set by integrating through intersection later.

Based upon research in SBD and results from experiment 2 which suggested im-

provement in the accuracy of boundings due to the collapse of high dimensional spaces

into NHC sub-spaces of lower dimension, it was hypothesized that a SBD approach

for computing the global feasible space would be the most efficient. This assertion

is largely supported by the assumption that while a design space may be NHC, it is

unlikely that the space is NHC in all of the design variables simultaneously for a real

physics-based application. The situation that is assumed to be much more probable

is that certain sets of design variables are related to each other through correlations

or constraints which themselves are a product of the physics embedded within the

problem. For example, it is much more probable to expect a fan blade parameter to

be correlated with a turbine blade parameter as opposed to a wing design variable.

Based upon this logic, hypothesis 3 is expressed formally as follows:

5.3.1.1 Hypothesis 3: Regarding RQ3

If a set-based design (SBD) approach, which integrates through intersection multiple

Constraint Defined Feasible Sets (CDFS), is used to construct a global boundary of

the feasible design space, then this approach will provide a more efficient and accurate

representation of the true feasible space than simply bounding the global feasible set.

5.3.2 Experiment Design

In order to investigate whether a SBD approach would allow for the efficient and

accurate creation of a bounding for the global feasible space, a 10 dimensional NHC

design space subject to 4 separate constraints was examined. For the hypothesis

presented in this experiment to be substantiated, the SBD approach must provide a
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more accurate and complete representation of the global feasible design space than

the global bounding approach through the expenditure of comparable computational

resources. PMC sampling was used to populate the 10 dimensional baseline design

space which was then made NHC by the simultaneous application of 4 separate con-

straints, each a function of different subsets of the 10 design variables. Both bounding

methods were then examined for their ability to accurately capture the global feasible

space within this constrained design space.

5.3.2.1 Apparatus

To determine if a SBD approach was superior to a global approach for BAS of NHC

spaces, a representative NHC test design space subject to multiple unique constraints

was required. This test design space would be created through NHC constraints

simultaneously applied numerically (See Appendix for details) to the baseline Hy-

percubic design space defined for each repetition of the design space sample. The

constraints were applied on different subsets of the DV considered within the test

design space. These constraints would be queried again once adaptive samples had

been generated with the use of the bounding classifiers to determine which designs

among the adaptive samples were feasible with respect to each relevant constraint.

As this experiment was meant to determine the most appropriate approach for

constructing a bounding of the global feasible design space for adaptive sampling

purposes, a means for constructing boundings was again necessary. Even though

the primary test in this experiment examined the difference between two approaches

for the construction of a global bounding, it also examined two competing classifier

tools. The randomForest package implemented in the statistical programming lan-

guage R was again utilized to construct random forest RF classifiers for the purpose

of bounding feasible design spaces for this experiment [83, 23]. RF classifiers were

further used in this experiment to identify NHC variables relevant to each unique
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feasible set within the design space. In Addition, the kernlab package implemented

in R was used to construct kernel-based support vector machine SVM classifiers to

provide an alternative bounding tool to the RFs [83, 3]. The parameters used to

construct the RF and SVM classifiers are as follows:

� Random Forest RF : Number of trees = 2000

� Support Vector Machine SVM : kernel: Radial Basis Function RBF , σ =

0.1, Cost = 10

5.3.2.2 Metrics

Three individual metrics were utilized to evaluate the efficacy of the two bounding

methods being compared. They were meant to capture the accuracy of the boundings

created by the methods as well as quantify the associated computational costs to

construct them. The three metrics are as follows:

� Method Execution Time MET : the computational time (measured in sec-

onds) required for the respective methods to generate their required elements.

For the global bounding approach, this includes the time required to create the

global bounding in all NHC dimensions. For the SBD approach, this repre-

sents the time required to create each of the CDFS boundings and assemble the

integrated bounding for the global set.

� Feasible Design Ratio FDR: the ratio of feasible designs obtained within

the sample set to the total number of designs evaluated within the sample set.

This metric measures how successful each bounding method is at suggesting

feasible designs. FDR is decreased from a upper limit value of unity due to the

Number of False Positives NFP present within a new sample suggested by the

bounding. False Positive designs are designs which are incorrectly classified as
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feasible by the bounding, but are actually infeasible when evaluated with the

truth model.

� Number of False Negatives NFN : the opposite of False Positives, the

NFN represents the total number of designs which are incorrectly classified as

infeasible by the bounding (and thus not suggested for a new adaptive sample),

but are actually feasible when evaluated with the truth model. The NFN can

be seen as a measure of how conservative a particular bounding may be, with a

large NFN value suggesting a conservative bounding which potentially excludes

a large region of the true feasible space.

5.3.3 Experiment Settings and Execution

This experiment required the comparison of two competing approaches performing

bounded adaptive sampling for a Non-Hypercubic design space. To simplify the extent

of this experiment, only a single NHC design space was examined over 10 repetitions

initially sampled with 1000 design cases each. This design space featured 10 total

design variables of which 8 were made NHC by the imposition of four separate con-

straints. The constraints applied to the design space and the variables they affected

are as follows:

� Non-Linear Constraint Large (NLCL): 3-D; Dimensions Affected: X1, X3,

X5; Infeasible Volume: 20 percent of baseline hypervolume

� Linear Constraint Small (LCS): 2-D; Dimensions Affected: X2, X4; Infea-

sible Volume: 5 percent of baseline hypervolume

� CheckerBoard Constraint Coarse (CBC): 2-D; Dimensions Affected: X5,

X7; Infeasible Volume: 50 percent of baseline hypervolume

� Hyperspehere Removal Constraint (HS): 3-D; Dimensions Affected: X4,

X8, X10; Infeasible Volume: 20 percent of baseline hypervolume
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These particular NHC subsets were chosen to help illustrate the potential utility of

the SBD bounding approach as well as allow for visualization of the NHC regions of

the 10-D design space. The global feasible space for this 10-D design space is simply

the intersection of the feasible regions of these four Constraint Defined Feasible Sets

(CDFS). It is important to note that while the design space being examined is NHC

in 8 of its 10 design variables, only small subsets of the 10 variables are relevant

to each CDFS. Thus, in the SBD bounding approach, boundings for each of the

individual CDFS only need be constructed as a function of the variables relevant to

that particular set (the rest are assumed Hypercubic for that set and can be sampled

as usual by picking a value between design variable limits). This property, combined

with the artificial increase in LPD due to the collapse of Hypercubic dimensions,

highlights the logic behind hypothesis 3.

Before the procedure of experiment 3 is enumerated in detail, it is necessary to call

attention to two vital assumptions being made. Firstly, in order for the SBD bounding

approach to be distinct from the global bounding approach, there must be output with

sufficient detail from an initial sample of the space to identify the presence of multiple

modes of infeasibility (i.e. there must exist more than one CDFS) within the NHC

design space. If this is not the case, then only a single CDFS can be constructed from

the data and this is by definition the global feasible set. Because of this distinction,

it is hypothesized that the more modes of infeasibility a given design space has, the

more potentially advantageous it is to perform bounded adaptive sampled through

the use of the SBD approach. The second assumption being made, and critical to

the potential advantages of SBD bounding, is that the variables are relevant to the

boundary of each CDFS are able to be identified. If these variables are not able to be

extracted from the full set of variables composing the design space then boundings

must be constructed as a function of all variables and thus do not benefit from the

artificial increase in LPD that occurs due to the collapse of Hypercubic dimensions.
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For the purposes of this experiment, the Gini ranking of variables (features) provided

by a random forest classifier fit to the global feasible space in all 10 dimensions

was used to identify and separate the NHC and Hypercubic variables. Furthermore,

another random forest was fit to each CDFS in only the NHC to further isolate the

subset of NHC variables relevant to that particular CDFS. The SBD approach then

used the appropriate variable subsets from which to construct boundings for each

CDFS.

5.3.3.1 Procedure

To ultimately compare the two approaches, the mean values of the metrics over all

10 replications were used to determine the superior method for bounded adaptive

sampling for the given design space. The enumerated procedure followed through the

experiment is as follows:

1. Construct a PMC design in 10-D with 1000 cases and impose certain constraints

on different subsets of variables meant to illustrate different characteristics po-

tentially present in a NHC design space, make 10 repetitions of each of this

space

2. Classify designs as either successes or failures w.r.t each constraint

3. Classify designs as either global successes or failures w.r.t. all constraints si-

multaneously

4. Construct a global RF classifier in all DV for the purposes of variable identifi-

cation

5. Taking only the variables identified as NHC with the global RF bounding, now

construct global boundings (RF and SVM for comparison) in this subset of

variables
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6. Taking only the variables identified as NHC with the global RF bounding, now

construct RF classifiers for each constraint and identify which variables appear

to be NHC within this subset of varibles for each constraint

7. Taking only the subsets of variables identified as NHC for the respective con-

straints, now construct SBD boundings (RF and SVM for comparison) in these

subsets of variables for each constraint

8. Use all of these boundings to suggest new DOEs consisting of 10000 designs

each

9. Calculate performance metrics for the two approaches: predictive accuracy

(FDR, NFP, NFN), timing (MET), and quality of information extracted

10. Repeat steps 2-8 for each repetition

11. Draw final conclusions

In order to draw final conclusions in this experiment, the FDR, NFP and NFN

values for the new samples produced from each method were compared. MET values

were also compared between approaches as a measure of computational efficiency.

The hypothesis was considered substantiated if SBD consistently produced a more

accurate bounding (higher FDR, and lower combined NFP and NFN) of the global

feasible space than the global bounding approach utilizing comparable computational

efficiency.

5.3.4 Results Discussion

To construct the input for the bounded adaptive sampling approaches, 10 replicates

of the 10-D design space were generated and the four separate constraints applied

to each replicate to make the spaces NHC. These replicates were then classified by

determining if each case was either feasible or infeasible to each of the constraints.
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A case was considered globally feasible if and only if it was feasible for all individual

constraints.

With the input data generated and classified, the first examination of the space

came through the generation of a RF trained to the globally feasible set utilizing all

of the design variables as factors. Figure 55 illustrates the ranked variable impor-

tance produced by the RF for all of the variables. These plots can be interpreted as

a ‘sensitivity’ of the RF classifier to the exclusion of any one of these variables from

the model. Immediately evident is that variables X5 and X7 are deemed extremely

important for providing an accurate classification for the global feasible space. This

makes sense as these two variables were utilized in the CBC constraint which was

responsible for producing the largest infeasible volume within the design space. Fur-

themore, it is interesting to note that X5 is ranked as slightly more important than

X7 and this again makes sense as it was also utilized for the NLCL constraint. The

next most important variables to the classifier are in order (referring to Gini plot):

X4, X10, X8, X3 and X1. These variables are also utilized for the constraints with

X4 being shared by two constraints. The two variables in which the space remained

Hypercubic, X6 and X9 are the lowest ranked variables in terms of importance to the

classifier, yet it is interesting that X2 is only seen as slightly more important than

these variables. From this information it is difficult to discern whether or not the

space is NHC in X2. This is perhaps because the constraint to which X2 is relevant is

responsible for creating an infeasible region containing only 5 percent of the original

Hypercubic volume. Additionally, X4 with which X2 shares the LCS constraint is

already highly ranked, thus the model may be incorrectly attributing some of X2’s

effect on the feasible space to X4. Ultimately while providing a very useful look into

the characteristics of the design space, the global RF classifier does not provide a

definitive identification of the NHC variables within the design space.

After constructing the Global RF for NHC variable identification, a RF classifier
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Figure 55: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the Global NHC Feasible Space

was then trained utilizing all of the design variables as factors but classified by each

individual CDFS. Figure 56 illustrates the variable importance rankings for each of

these four RF classifiers. With each classifier allowed to focus on only a single CDFS,

the NHC variable identification results are much less ambiguous and correctly identify

the relevant set of variables for each CDFS. This result provided the first evidence

that the SBD bounding approach could provide superior information about the design

space compared to the global bounding approach.
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Figure 56: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding each NHC CDFS (Con1: NLCL 3-D, Con2: LCS 2-D,
Con3: CBC 2-D, Con4: HS 3-D)
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Taking the results from the variable identification steps, the set of variables con-

sidered for the boundings was paired down from the full 10 to 8 relevant variables:

X1, X2, X3, X4, X5, X7, X8, and X10. All 8 of these variables were then utilized

to construct the global boundings for the feasible design space through training both

RF and SVM classifiers. For the SBD approach however, only the relevant subsets of

these variables, identified with the individual CDFS trained RFs, were used to con-

struct boundings through training both RF and SVM classifiers for each respective

CDFS.

Results Interpretation (Fig. 57-60) These figures depict the new adaptive sam-

ples (at 10000 design cases each) produced by the two bounding methods (utilizing

two types of classifiers each) displayed in the dimensional subsets that were relevant

to each CDFS. The black circles represent design cases which were deemed feasible

by the particular classifier used to bound the CDFS. Conversely, the voids (or regions

of greatly reduced density) present in these samples represent regions of infeasibility

identified by the particular classifier and thus the new adaptive samples are rarely

present in these regions. These visualizations of cross-sections of the feasible con-

strained design space can be compared to their respective constrained design spaces

in the Appendix to provide an indication of how well the feasible design space is being

classified and bound.

It is immediately apparent through visual inspection of these adaptive samples

that while both BAS methods appear to capture some structure within the NHC

design space, the SBD generated samples provide more accurate representations of

each of the CDFS present within the 10-D design space. This result is a direct effect of

the artificial increase in LPD which occurs as dimensions not relevant to a particular

set are ignored/collapsed when boundings are constructed through the SBD approach.

To quantify this, effective LPD can be calculated for both the global bounding and
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Figure 57: New Designs Suggested by the Global Bounding Approach for each of
the CDFS (NLCL 3-D, LCS 2-D, CBC 2-D, HS 3-D) using a Random Forest (RF)
Classifier

SBD bounding approaches:

LPDGlobal = n
1

drelevant = 1000
1
8 = 2.371 (31)

LPDSBD−3D = n
1

drelevant = 1000
1
3 = 10.000 (32)

LPDSBD−2D = n
1

drelevant = 1000
1
2 = 31.623 (33)

As evidenced by the calculations, the resolution available for training classifiers using

the global bounding approach is an effective LPD of 2.371 as the bounding is fit to

all 8 NHC dimensions. Using the same set of training data, the equivalent resolution

(expressed in LPD) is increased by a factor larger than 4 for the 3-D CDFS boundings

and by a factor greater than 13 for the 2-D CDFS boundings constructed with the SBD
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Figure 58: New Designs Suggested by the Set-Based Design (SBD) Bounding Ap-
proach for each of the CDFS (NLCL 3-D, LCS 2-D, CBC 2-D, HS 3-D) using a
Random Forest (RF) Classifier

approach. Not only does this strongly suggest that the SBD constructed boundings

will be more accurate, but by breaking out the individual CDFSs, more information

is returned about the design space. This realization is important not only because it

provides a greater granularity of insight into the features of the feasible design space

(useful for debugging codes, verification) but also because it provides a more robust

bounding of the design space. If any one of the constraints currently present in the

design space were to become inactive, a new bounding for the feasible space would

need to be generated if only a global bounding exists. However, if the SBD approach

is used, the new global feasible space is simply the intersection of the remaining CDFS

boundings and thus no new bounding classifier need be trained.
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Figure 59: New Designs Suggested by the Global Bounding Approach for each of the
CDFS (NLCL 3-D, LCS 2-D, CBC 2-D, HS 3-D) using a Support Vector Machine
(SVM) Classifier

While the SBD approach certainly seems to produce adaptive samples which most

accurately represent the feasible design space delineated by each of the constraints,

it is interesting to observe how the different classifier tools perform. Through visual

inspection of these samples, it is difficult to discern if the RF classifiers provide better

boundings than those constructed from SVM classifiers. It appears that while the RF

classifiers are able to much more accurately capture the features present due to the

CBC constraint, the SVM classifiers perform better at capturing the LCS constraint.

It is also difficult to determine which classifier type better resolves the non-linear

features. Based on this result, both of these classifier tools will be utilized in the final

experiment.

156



www.manaraa.com

Figure 60: New Designs Suggested by the Set-Based Design (SBD) Bounding Ap-
proach for each of the CDFS (NLCL 3-D, LCS 2-D, CBC 2-D, HS 3-D) using a
Support Vector Machine (SVM) Classifier
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More concrete conclusions can be drawn for the two competing BAS approaches

through examination of the quantitative results in each of the metrics. Table 7 dis-

plays the MET results obtained through the experiment. While the SBD approach

is more computationally expensive than the global approach in all cases, it is only

slightly so for this particular design space and its associated CDFS. It is expected

that the MET would increase significantly with the size of the design space in both

approaches, however depending on the number of CDFS to be evaluated in the SBD

case this could lead to significant differences in computational effort between the two

approaches. However, it is worth noting that although the SBD approach required

more total MET, it appears that the required time to construct each individual bound-

ing was noticeably less than the time to construct the global bounding. This result

makes sense as the SBD boundings were constructed in fewer variables than the global

bounding. When comparing the use of RF to SVM classifiers, although RF required

more resources, for this particular design space, the difference would be considered

negligible in the decision to choose one over the other. To provide a hardware bench-

mark, these tests were performed on a system running 64-bit Windows 10 with an

Intel Core i7-4790k processor at 4.00 GHz with 16 GB of RAM.

Table 7: Summary of Method Execution Time (MET) Required for AAO and BAS

Training of Bounding Classifier

Bounding Approach Classifier Type min time (s) max time (s)

Global Random Forest 2.130 2.47

Set-Based Design Random Forest 3.210 3.490

Global Support Vector Machine 0.160 0.220

Set-Based Design Support Vector Machine 0.220 0.310

To evaluate the accuracy of the competing BAS approaches they were compared

using the FDR, NFP and NFN metrics. Figures 61-65 illustrate the FDR of the

adaptive samples for each of the individual CDFS and finally the global feasible space
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generated by the bounding classifiers produced through both approaches (Global and

SBD) using the two classification tools (RF and SVM). As there were 10,000 new

design cases suggested per adaptive sample set, the FDR for each replication was

calculated as follows:

FDR =
10000−NFP

10000
(34)

Through this relation the FDR captures the NFP generated by a given bounding

produced adaptive sample and scales it to easily allow accuracy conclusions to be

drawn. For every CDFS, FDR technically ranges from 0 to 1, but an FDR below

the fraction of the original Hypercubic volume bound by a given CDFS would mean

that the BAS method performed worse than simply randomly sampling the original

Hypercubic space. The beneficial lower limits of FDR for each of the CDFS are the

following:

� NLCL FDR Lower Limit: 0.80

� LCS FDR Lower Limit: 0.95

� CBC FDR Lower Limit: 0.5

� HS FDR Lower Limit: 0.80

� ALL (Integrated CDFS) FDR Lower Limit: 0.30

Analyzing the FDR results in Figures 61-65 a few general trends emerge. As ex-

pected, the SBD boundings result in a larger FDR with generally less spread between

repetitions than their globally bound counterparts. It is surprising then to see when

all of the CDFS are integrated together to estimate feasible cases for the global feasi-

ble space that the globally bound RF classifier has such a high FDR. This bounding

was constructed with much less resolution yet it only differs in mean FDR from the

SBD RF by less than 0.025. This result suggests that the Global RF bounding is per-

haps much more accurate than expected and maybe the SBD approach while slightly
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Figure 61: Feasible Design Ratio (FDR) Comparison Between Bounding Approaches
for the Large Non-Linear (NLCL) Constraint Defined Feasible Set (CDFS)

more accurate may not be worth the additional effort. However, this is because FDR

(and its surrogate NFP) alone do not tell the entire story regarding accuracy.

Figure 67 shows the other side to the accuracy story and illustrates that while the

Global RF bounding may have a high FDR, it also has an extremely high number of

false negatives. While the false negatives are not infeasible cases, they represent feasi-

ble designs passed up by the classifier because it was too conservative in its bounding

of the feasible space. This high NFN number means the Global RF bounding passed

on almost double the number of truly feasible case for its adaptive sample than any

of the other boundings. Thus, when looking at all the metrics it is clear that SBD

BAS approach provides a clear advantage to global BAS without significantly higher

computational effort required.
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Figure 62: Feasible Design Ratio (FDR) Comparison Between Bounding Approaches
for the Small Linear (LCS) Constraint Defined Feasible Set (CDFS)

Figure 63: Feasible Design Ratio (FDR) Comparison Between Bounding Approaches
for the Coarse Checkerboard (CBC) Constraint Defined Feasible Set (CDFS)
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Figure 64: Feasible Design Ratio (FDR) Comparison Between Bounding Approaches
for the Hypersphere Removal (HS) Constraint Defined Feasible Set (CDFS)

Figure 65: Feasible Design Ratio (FDR) Comparison Between Bounding Approaches
for the Global Feasible Set (Intersection of All CDFS)
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Figure 66: Number of False Positives (NFP) Comparison Between Bounding Ap-
proaches for the Global Feasible Set (Intersection of All CDFS)

Figure 67: Number of False Negatives (NFN) Comparison Between Bounding Ap-
proaches for the Global Feasible Set (Intersection of All CDFS)
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5.3.5 Conclusions and Consequences

Through analysis of the results of experiment 3 it was established that although the

SBD approach for bounded adaptive sampling required slightly more computational

effort, it was generally more accurate than a global approach. If the feasible regions

formed by the CDFS are disjoint, then from the same set of training data a smaller

subset of variables can be identified that are relevant to the given CDFS and thus the

other dimensions while not ingnored can effectively be collapsed. This collapsing of

dimensions artificially increases the resolution (LPD) used to generate the bounding

for that particular CDFS through the reduction of the number of variables or factors

used to construct the bounding classifier. This results in SBD boundings that are

more accurate (higher FDR and lower NPF and NFN) and also benefit from not

needing to fit the complex composite structure likely present in the global case due to

its definition as the intersection of all CDFS. Based upon these results hypothesis 3 is

considered substantiated, however care should be taken when examining spaces of high

dimension with large numbers of CDFS as these factors could drive the computational

cost of such an approach significantly higher.

5.4 Experiment IV

5.4.1 Motivation and Thought Experiment

The purpose of experiment 4 was to demonstrate the methodology proposed within

this thesis on a real aircraft conceptual design problem using a state-of-the-art Mod-

eling and Simulation environment to produce data. The key theme of this final

experiment was to assemble all of the knowledge gained in the previous experiments

and utilize the resultant complete methodology to show an improvement in DSE effi-

ciency and knowledge gain with respect to current practices. If such a benefit can be

shown, this would provide evidence of the effective utility, capabilities and likely limi-

tations of using such an approach for Hypercubic classification and DSE for practical
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problems. To this end, research question 4 is reiterated:

Research Question 4 (RQ4):

Can use of the proposed methodology demonstrate an improvement in

efficiency and knowledge gain with respect to state of the art practices

in design space exploration techniques for a realistic aircraft conceptual

design problem?

In order to answer RQ4, the complete methodology was put through its paces for

a high-dimensional aircraft design problem which utilized the Environmental Design

Space (EDS) to explore the conceptual design space for a Large Twin Aisle (LTA)

Hybrid Wing-Body (HWB) aircraft concept. EDS was chosen as the Modeling and

Simulation environment for this particular problem due to its widespread use for

conceptual studies [17, 30, 32, 38, 40, 39, 43, 44, 65, 73, 74, 75, 77, 76, 87, 88, 89],

the relative expense associated with DSE within the environment, and the observed

presence of multiple failure modes which appear non-random in nature. The LTA

HWB was chosen as an aircraft concept for investigation because a useful and relevant

design space could be expressed in less than 100 variables yet due to the advanced

nature of the concept, a certain percentage of infeasible/failed designs were expected

within the design space of interest. The hypothesis that the methodology is beneficial

for DSE for such a conceptual aircraft design problem is considered substantiated if

and only if its application allows for more efficient exploration and understanding of

the design space with respect to common practices of DSE such as single iteration

PMC.

5.4.1.1 Hypothesis 4: Regarding RQ4

If the design space of interest is Non-Hypercubic and sufficient design space sample

resolution is utilized, then use of the proposed methodology will demonstrate an im-

provement in efficiency and knowledge gain with respect to state of the art practices in
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design space exploration techniques for a realistic aircraft conceptual design problem.

5.4.2 Experiment Design

In order to demonstrate the methodology in action for a real problem, a 97-D design

space was initially examined followed by a 50-D design space for the LTA HWB within

the EDS Modeling and Simulation environment. The LTA HWB was modeled within

EDS as 300 passenger (24 first class, 54 business class, 227 tourist, 2 flight crew)

aircraft flying a cruise-climb mission profile with a design range of 7530 nautical

miles. The design aircraft was powered by two (parametrically defined) fuselage-

mounted high-bypass turbofan engines of the 50,000-60,000 pound thrust class. The

vehicle had a maximum cruising altitude of 43,000 feet and a cruise Mach Number

of 0.84. Additional details about the variables used to create the LTA HWB design

spaces (97-D and 50-D respectively) can be found in the Appendix.

For the hypothesis presented in this experiment to be substantiated, the method-

ology must illustrate that it can improve upon current best practices as well as provide

knowledge about the design space previously unknown or attainable only after much

iterative exploration of the design space/knowledge of the underlying physics in the

Modeling and Simulation environment.

The initial 97-D LTA HWB design space was a previously generated data set using

EDS version 5.4. This space was explored with 15,000 unique design cases structured

within the design space as follows:

� 3,000 Face Centered points (placed at extremes of the design space)

� 10,000 Space Filling points (placed randomly in the design space using PMC)

� 2,000 Random Technology Packages (designs corresponding to technology com-

binations, these cases only span a subset of the full design space)

These design cases would ultimately be classified and partitioned into an ‘initial’ set
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for training consisting of the first 10,000 cases (the 3k Face Center and 7k of the

PMC) and a ‘validation’ set containing the remaining 5,000 design cases.

The 50-D LTA HWB design space was ultimately created to address resolution and

homogeneity issues that limited the successful application of the method on the initial

97-D design space. The 50-D design space used a pared down subset of the original

97 design variables, removing all noise variables and keeping a set of 50 variables

considered important to the responses. Additionally, a design variable governing

takeoff thrust (TO thrust) was added with aggressive ranges and the lower limit for

the Thrust to Weight Ratio variable (TWR) was decreased to allow for the data set to

achieve more balance between feasible and infeasible designs. This space was explored

multiple times, first with 15,000 design cases placed randomly in the design space

using PMC (Run 1), then with another 15,000 PMC cases for increased resolution

(Run 2) and finally with two adaptive sample DOEs generated by boundings created

by the methodology for the purposes of exploring the feasible design space ASE and

refining the NHC boundary ASR. Similar to the 97-D design space, the design cases in

Run 1 would ultimately be classified and partitioned into an ‘initial’ set for training

consisting of the first 10,000 cases and a ‘validation’ set containing the remaining

5,000 design cases. Run 2 would provide additional resolution for MI calculation

and be used for additional validation. ASE and ASR would be used respectively for

validation of predictive capabilities and boundary refinement of the CDFS boundings.

Ultimately, the objective of experiment 4 for both of these DSE tests was to show

an improvement in understanding and efficiency of the exploration of the feasible

design space compared to traditional techniques. This would be achieved through

application of the methodology and generation of CDFS boundings to be used for

adaptive sampling. If these boundings could be shown to improve the rate of return

for a given expenditure of computational effort (without being too computationally
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intensive to generate themselves) they would provide evidence for successful applica-

tion of the methodology on a practical problem.

5.4.2.1 Apparatus

EDS version 5.4 was utilized as the Modeling and Simulation environment for evalu-

ating design points for the LTA HWB. To allow for the evaluation of the number of

design cases necessary to explore the spaces considered, the HTCondor software was

utilized for distributed computing [99] and leveraged the processing power of multiple

workstations throughout the Aerospace Systems Design Laboratory where the work

was performed. Microsoft Excel was utilized for DOE generation and classification of

results.

AS in experiment 1, MILCA was utilized to estimate MI for the datasets. Fur-

thermore, routines written in R, again leveraging both the randomForest and kernlab

libraries, were used for classifier model creation adaptive sample generation and data

post-processing.

5.4.2.2 Metrics

The metrics for experiment 4 emphasize the amount of computational resources uti-

lized and quality of the resultant boundings for the constraint defined feasible sets

(CDFS) and the ultimate global feasible space existing within the LTA HWB design

space. The methodology will iteratively update boundings of the design space, thus

the accuracy of these boundings will be tracked for multiple iterations and analyzed to

determine if improvement (of the boundings and understanding of the design space)

occurs through adaptive sampling. The metrics for experiment 4 are as follows:

� Mutual Information Delta MID: the difference between the baseline MI

value for a given unique DOE and the MI value calculated for the cases within

that DOE which remained feasible after a given constraint was applied. If the

MI delta value is positive (i.e. the MI value of the constrained space is higher
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than that of the baseline) then features exist within the design space that make

it Non-Hypercubic. The mathematical expression for MID is given in eqn. 27.

� Method Execution Time MET : the computational time (measured in sec-

onds) required for the respective computational elements of methodology to

generate their required elements. For the global bounding approach, this in-

cludes the time required to create the global bounding in all NHC dimensions.

For the SBD approach, this represents the time required to create each of the

CDFS boundings and assemble the integrated bounding for the global set.

� Cross Validation Error CV E: Because of the relative expense associated

with generating data for this problem, cross validation will be utilized in the

training of some classifiers during the experiment. CVE will be tracked as a

metric for model accuracy but will be largely used to guide feature selection

(i.e. which subset of variables should be used to produce the best bounding

classifiers)

� Number of False Positives NFP : designs which are incorrectly classified as

feasible by the bounding, but are actually infeasible when evaluated with the

truth model. This metric will be calculated both by performing classifications

on reserved validation sets and through the evaluation of new adaptive sample

sets generated from BAS.

� Number of False Negatives NFN : the opposite of False Positives, the

NFN represents the total number of designs which are incorrectly classified as

infeasible by the bounding (and thus not suggested for a new adaptive sample),

but are actually feasible when evaluated with the truth model. This metric will

be calculated both by performing classifications on reserved validation sets and

through the evaluation of new adaptive sample sets generated from BAS.
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5.4.3 Experiment Settings and Execution

5.4.3.1 Procedure

The following experimental procedure was followed for both the 97-D and 50-D DSE

tests. While the 97-D test ultimately produced unsatisfactory results and was deemed

not appropriate for bounded adaptive sampling, it did provide insight into when and

how the methodology could fail to improve upon the results achieved through sam-

pling using common practices like single iteration PMC. In order to demonstrate the

methodology for both DSE tests, the following experimental procedure was followed:

1. Generate or utilize an existing data set spanning a design space of interest, and

use the output to classify the set of globally feasible design cases

2. Partition the classified data set into an ‘initial’ set for training and a ‘validation’

set

3. Take multiple random samples of a fraction of the ‘initial’ data set (where this

fraction corresponds to the same fraction of design cases that were classified

within the set as globally feasible) the and compute the Mutual Information

(MI) of these samples

4. Compute the MI of the feasible design space (using only the globally feasible

design cases)

5. Compute the MID between the Feasible MI value and the baseline MI values,

if MID is consistently positive and the resolution (LPD) is believed sufficient,

classify this space as Non-Hypercubic (NHC)

6. If the design space was classified as NHC and the decision has been made to

proceed with Bounded Adaptive Sampling (BAS) of this space, identify modes

of failure or infeasiblity and classify the data into a series of Constraint Defined

Feasible Sets (CDFSs) for both the ‘initial’ and ‘validation’ sets
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7. Train Random Forest (RF) classifiers on the globally feasible set and each CDFS

of the ‘initial’ set to identify NHC variables relevant to each set

8. Construct cross-validated SVM bounding classifiers for each CDFS trained us-

ing the ‘initial’ set and sweeps of variable subsets (determined from relevance

rankings produced by the RFs)

9. Select the ‘best’ boundings for each CDFS utilizing Cross Validation Error

(CVE) to guide feature selection

10. Use the ‘validation’ sets for each CDFS to determine the quality of these bound-

ings through computing NFP and NFN

11. Construct an adaptive sample meant to explore (ASE) the global feasible space

by querying the boundings of each CDFS simultaneously for designs which are

classified as feasible by all boundings

12. Construct an adaptive sample meant to refine (ASR) the boundary by querying

the boundings of each CDFS simultaneously for designs which are hardest to

classify (classification uncertainty is high)

13. Evaluate both new adaptive samples (ASE and ASR) using the modeling and

simulation environment

14. Classify the output of the ASE to determine if the percentage of infeasible

designs has decreased compared to the original DOE (better than BAU?)

15. Classify the output of the ASR and utilize it to retrain/refine all CDFS bound-

ings

16. Repeat steps 10-15 until computational resources are exhausted or satisfaction

with the bounded feasible design space is achieved

17. Draw final conclusions
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5.4.4 Results Discussion

The following discussion is divided into two sections corresponding to the two DSE

tests that were undertaken in this experiment. The first section details the ‘failed’ ex-

periment for the 97-D design space and draws conclusions as to why the methodology

could not be shown to yield appreciable improvement over common sampling prac-

tices. The next section then describes the 50-D test which was created to alleviate

some of the issues which plagued the first test yet still remain of significant dimen-

sionality to represent a realistic design space. Ultimately, both tests were successful

implementations of the methodology, with the first breaking it and probing its limits

and the second showing how if used under the proper circumstances, a significant

improvement over traditional DSE can be achieved.

5.4.4.1 Initial Investigation: 97-D LTA HWB Design Space

Experiment 4 began with consideration of only the 97-D DSE test. The data set was

first classified and was found to contain nine modes of failure/infeasibity, they were

as follows:

� FLOPS-ZFW: FLOPS Zero Fuel Weight ZFW error (vehicle sizing)

� ANOPP: ANOPP error (noise)

� CONDOR: HTCondor error (distributed computing)

� Cum-Noise: Cumulative Noise below threshold (noise)

� ROC: Rate Of Climb insufficient error (vehicle sizing)

� MDP: Multi-Design Point error (engine sizing)

� Thrust-Conv: Thrust Convergence error (engine sizing)

� WATE: WATE error (engine flowpath)
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� Main-Conv: Main Design Loop Convergence error (convergence)

For a design to be considered globally feasible within the set, it had to simultaneously

satisfy all of these constraints (i.e. not be made infeasible by these error modes). A

CDFS would would eventually be constructed for each of these modes, but it is

important to note that regions of overlap are not visible with the level of output

provided. Because of this, if a design case was made infeasible due to any one failure

mode, it could not be considered feasible for any of the other modes. Thus the only

feasible cases which could be used to train the CDFS boundings were those that were

globally feasible. The classification breakdown of the 97-D LTA HWB dataset can

be seen in table 8. An important conclusion from this table is that not only is the

data set extremely sparse for a 97-D design space, but it is vary unbalanged in terms

of the ratio of feasible to infeasible cases. For the CDFS with the largest number of

infeasible cases in its training set (FLOPS-ZFW) the feasible cases still outnumber

the infeasible cases by a ratio greater than 8:1, for the next largest CDFS this ratio

increases to over 63:1. This unbalanced nature of the CDFS is one of the factors that

ultimately contributed to the poor performance of the methodology for this particular

design space.

While results from the Hypercubic classification steps suggested the design space

was NHC, the resolution (LPD) at which the design space was sampled was extremely

low, calling into question the validity of the MI results. Table 9 details the MID results

of the 97-D LTA HWB design space. When examining these results it is important

to note that the Face Centered points had a much higher infeasible rate (around

30 percent) compared to approximately 10 percent for the PMC designs and thus it

makes sense that they should point toward a more NHC space. Ultimately, when

lumping both sets together, the MID value was reduced significantly (likely effect of

the individual design variable distributions becoming more uniform as corner points

were lumped with space-filling ones) yet still indicated a NHC classification of the
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Table 8: Summary of Constraint Defined Feasible Set (CDFS) Classifications for the
97-D LTA HWB Design Space

Training Set Validation Set

CDFS Name Feasible Infeasible Feasible Infeasible

Global 8576 1424 4610 390

FLOPS-ZFW 8576 1030 4610 269

ANOPP 8576 135 4610 62

CONDOR 8576 60 4610 19

Cum-Noise 8576 44 4610 25

ROC 8576 57 4610 2

MDP 8576 48 4610 9

Thrust-Conv 8576 28 4610 0

WATE 8576 15 4610 0

Main-Conv 8576 7 4610 4

space. It must still be pointed out however, that even with this result, the LPD for

the sample is 1.1 (due to the high number of dimensions) lower than almost all critical

LPD values identified in experiment 1 and thus making the NHC classification of the

design space using MID tenuous at best. However, with this existing data set this

is the information available, and given the percentage of failures/infeasible designs

present, BAS has yet to be dismissed as potentially advantageous for this design

space.

Table 9: Summary of Mutual Information Delta (MID) Data for Hypercubic Classi-
fication of the 97-D LTA HWB Design Space

DOE Description LPD MID Mean MID SEM Classification

3k (Face Centered) 1.086 2.394 0.287 NHC

7k (PMC) 1.096 2.025 0.212 NHC

10k (Combined) 1.010 0.908 0.114 NHC
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Moving forward with SeBBAS, the CDFSs were constructed with the ‘initial’

training set and bound with RFs for NHC variable identification. It was here that

the measurable cracks began to show for this DSE test in 97-D and only 10,000

training points. NHC variable isolation was extremely difficult leading to CDFS

boundings constructed with over 30 variables each. Figures 68 - 71 illustrate a few of

the variable importance rankings produced by the RF classifiers fit to the CDFSs in

all of the design variables. While some variables are seen as extremely relevant like

FCDSUB, TWR and FRFU, it is difficult do discern from visual inspection where

to draw the cutoff in terms of how many variables should be included in the CDFS

bounding classifiers. It is desired to construct these boundings with as many factors

as necessary to capture the features which may exist in the design space, yet the

with the inclusion of each additional variable, for the fixed training set, the resolution

(LPD) suffers drastically. Here the curse of dimensionality again makes itself known

and presents a difficult challenge to the construction of accurate CDFS bounding

classifiers.

Although it was difficult to discern the most appropriate subset of variables to

include in the CDFS boundings, The variable ranking results produced by the method-

ology are valuable in that they represent a knowledge gain concerning the design space

currently unattainable through current DSE practices. Such information is very useful

for determining causality within an experimental environment. These rankings can

be used for each individual CDFS to backtrack through the experimental apparatus

what settings may be the responsible for or driving particular failure modes. These

results also serve as verification for whether or not appropriate physics-based relation-

ships are responsible for boundaries within the design space. For the FLOPS-ZFW

and ROC CDFSs, it is reassuring that propulsive and aerodynamic parameters are

the factors seen mostly relevant for features within the design space, while more en-

gine specific and noise governing parameters are most relevant to the ANOPP CDFS
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Figure 68: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the 97-D Global Feasible Space

Figure 69: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the 97-D FLOPS-ZFW CDFS
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Figure 70: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the 97-D ANOPP CDFS

Figure 71: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the 97-D ROC CDFS
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boundaries. If an unexpected factor were identified this could indicate a numerical or

otherwise non-physics-based issue (bug) present within an experimental apparatus.

Because the variable importance rankings did not provide definitive evidence of

exactly which design variable subsets were most appropriate for the individual CDFS

boundings, a sweep of factors was conducted for use in bounding the FLOPS-ZFW

and ANOPP CDFSs. Figures 72 and 73 detail the performance of each of the SVM

boundings conducted with differing subsets of design variables chosen. The cross-

validation error (CVE - seen as squares within the figures) was tracked for each of

these boundings and lower CVE generally reflected a more accurate bounding. The

accuracy of each bounding classifier was tracked through the NFP and NFN generated

for the validation sets utilizing the boundings to make predictions.

Results Interpretation (Fig. 72-73 and 78-79) The following performance fig-

ures illustrate how well BAS is able to reduce the number of misclassified designs

for a bound NHC feasible design space as well as the corresponding cross validation

error for a given bounding classifier. On the x-axis, the number of factors (or DV)

used in constructing the specific bounding classifier is plotted. The factors to be

included for any given bounding are ranked by increasing Gini impurity with the top

subset selected as ‘relevant’ to construct a given bounding classifier. As the number

of factors included increases, so does the complexity of the classifier (able to cap-

ture more effects), but because it is trained with only a fixed set of data, increasing

the factors also effectively decreases the sample resolution for the design space. On

the right y-axis, this effect can be seen in the behavior of the cross validation er-

ror. The best bounding classifiers, which minimize CVE, strike a balance between a

parsimonious model and one which includes enough factors to observe the primary

NHC features. On the left y-axis, the number of misclassified designs is tracked. To

provide a reference for the number of misclassified designs when sampling BAU, a
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solid horizontal line is plotted. All of these misclassifications are false positives as a

Hypercubic sampling technique does not exclude any of the design space. Red dots

on the chart represent the number of false negatives (designs thought infeasible when

truly feasible) produced through BAS while blue dots represent the number of false

positives (designs thought feasible when truly infeasible). The black dots are the sum

of these two misclassification types. For BAS to be shown to be superior to sampling

BAU, it must illustrate a lower total number of misclassified designs (i.e. be below

the horizontal line).
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Figure 72: Performance of the SVM Classifiers Bounding the 97-D FLOPS-ZFW
CDFS

Figure 73: Performance of the SVM Classifiers Bounding the 97-D ANOPP CDFS
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Figure 74: Method Execution Time (MET) Required for SVM Classifiers Bounding
the 97-D CDFSs

Unfortunately even utilizing the most accurate bounding produced for the FLOPS-

ZFW CDFS, the mislassifications illustrated that the infeasible set, compared to that

achieved through PMC sampling, would only have been reduced by 22 design cases

(only an 8 percent improvement) while 16 feasible cases would have been wrongfully

excluded. The ANOPP CDFS boundings were unable to show any increase in sam-

pling efficiency, and as a function of certain factor subsets even illustrated boundings

that would yield worse results (through design space restriction) than sampling BAU.

Computational resource expenditure tracked through MET and visible in Fig. 74 il-

lustrated that while not certainly not prohibitive, the construction of the boundings,

especially with large numbers of factors was not trivial, and thus could not be jus-

tified without demonstrated and significant improvement over BAU DSE practices.

From these results it was clear that the methodology could not be used to appre-

ciably show improvement over BAU DSE techniques for this particular design space.

It was hypothesized that the low resolution used to sample the high-dimensional
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space combined with the unbalanced nature of the classification results prevented

the methodology from being effective. For this reason, the remaining steps in the

methodology were suspended and adaptive samples were not created and evaluated

for this design space. The hypothesis was considered unsubstantiated by these results,

but not dis-proven. As a result, the 50-D DSE test was devised to offer a realistic

yet perhaps more favorable design space with which the methodology would again

attempt to illustrate benefit over common DSE practices.
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5.4.4.2 Final Investigation: 50-D LTA HWB Design Space

The 50-D design space was created as a realistic DSE problem which also alleviated

some of the factors which were believed to prohibit the methodology from illustrating

benefit with the 97-D DSE test. Firstly, instead of post-processing an existing and

non-homogeneously sampled design space, the new design space was explored in EDS

utilizing PMC sampling for all DOEs. Additionally four separate DOE would be

utilized to examine this space. Named Run1, Run2, ASE and ASR these DOE were

used respectively to gather an initial training and validation set, improve resolution

for MI and add additional validation data, quantify the increase in DSE efficiency

through use of BAS, and ultimately adaptively refine the CDFS boundings created

from the initial set.

Examining the classification results for Run1 (Table 10), an immediate difference

can be recognized in terms of the balance of the data set. The entire data set output

contained approximately 30 percent infeasible cases as opposed to approximately 12

percent observed in the 97-D DSE test. This increase in infeasible case percentage

was likely driven by the inclusion of the ‘TO Thrust’ variable to this design space as

well as the decreased lower limit on the TWR variable. As evidenced by all previous

experiments this greater balance suggests that if NHC features are present they will

likely be easier to detect using the methodology at a given resolution. Based upon

lessons learned in the 97-D DSE test, another important realization was made through

observation of this data in that some CDFSs (those with little infeasible classification

data) would likely be unable to be resolved for this design space. Thus the decision

was made to ignore all CDFSs except the two largest (FLOPS-ZFW and ROC) for

the remainder of the experiment.

After the Run1 data set was classified, MI could be calculated for the purposes

of Hypercubic Classification. The reduction in dimensions from 97 to 50 allowed the

design space resolution to be increased significantly for the same number of design
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Table 10: Summary of Constraint Defined Feasible Set (CDFS) Classifications for
the 50-D LTA HWB Design Space

Training Set Validation Set

CDFS Name Feasible Infeasible Feasible Infeasible

Global 7040 2781 3583 1330

FLOPS-ZFW 7040 2514 3583 1214

ROC 7040 246 3583 97

CONDOR 7040 199 3583 66

MDP 7040 11 3583 7

NPSS 7040 5 3583 8

Main-Conv 7040 5 3583 3

Thrust-Conv 7040 0 3583 1

cases evaluated (15,000). In addition, to drive the LPD even higher an additional

15,000 design cases from Run2 were also utilized to capture how MID values changed

for the design space with increasing resolution. Table 11 displays the results of the

MI Hypercubic classification on the 50-D design space. The first detail to note is that

the resolution for the design space sample (measured in LPD) is now comfortably

above some of the critical values required to resolve (using PMC sampling) some of

the larger features potentially present within NHC design spaces (for example NLC2

and CBC2 which denied 20 and 50 percent of the feasible space respectively). Thus

it can be reasoned that if features of similar magnitudes and confined to a small

number of dimensions were present within the design space they could be observed

by MI classification with the available resolution. Interestingly enough, not only do

the large MID values calculated suggest the space is NHC, but when the resolution

is increased, the MID values with error appear to increase, suggesting the space is

likely NHC (based on trends observed in experiment 1). Therefore the 50-D design

space was classified as NHC and passed to the next steps of the methodology.
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Table 11: Summary of Mutual Information Delta (MID) Data for Hypercubic Clas-
sification of the 50-D LTA HWB Design Space

DOE Description LPD MID Mean MID SEM Classification

10k (PMC-Run1) 1.202 2.525 0.087 NHC

15k (PMC-Run2) 1.212 2.460 0.181 NHC

25k (PMC-Run1-2) 1.224 2.6385 0.188 NHC

With the 50-D LTA HWB design space classified as NHC and deemed a suitable

candidate for BAS, CDFSs were constructed for both the FLOPS-ZRW and ROC

constraint sets. With these two sets representing the large majority of the infeasible

designs present within the overall set, their intersection was deemed an appropriate

approximation of the global feasible design space. With this data binned as such,

RFs were then fit to the CDFS for purposes of variable importance identification to

the NHC CDFS. Figures 75 - 77 illustrate the variable relevance findings of these

RF classifiers and tell a rather different story compared to the 97-D design space.

For both the FLOPS-ZFW and ROC CDFSs, a small subset of variables can be

identified as most important to bounding the features defined by the CDFSs. Of key

and unsurprising importance is the TWR variable which had its lower limit reduced

significantly for this design space. Also present in a more subtle way is the TO Thrust

variable as well as other familiar variables associated with aerodynamics, weight or

propulsive performance (ex: FCDSUB, FRFU and Cust-Bleed-Map).
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Figure 75: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the 50-D Global Feasible Space

Figure 76: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the 50-D FLOPS-ZFW CDFS
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Figure 77: Variable Importance Rankings from RF Classifiers Used to Identify Vari-
ables Relevant to Bounding the 50-D ROC CDFS
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Again utilizing lessons learned from the investigation of the 97-D LTA HWB design

space, cross-validation error was minimized to identify the subset of factors/variables

which would produce the most accurate CDFS boundings with the given design space

resolution provided by the ‘initial’ training set of the Run1 DOE. Figures 78 and

79 illustrate the performance of the sweep of boundings investigated for the CDFS

validated against the Run1 validation set. As with the results from the 97-D space,

the lower the CVE, the more accurate the boundings were for representing the CDFSs.

Unique to the 50-D DSE test however, the boundings showed significant improvement

over sampling BAU. Compared to that achieved through PMC sampling, the optimal

bounding for the FLOPS-ZFW CDFS illustrated a theoretical elimination of 945 false

positive design cases (a 77.8 percent improvement) while 417 feasible cases would

have been wrongfully excluded (when referenced against the Run1 validation set).

The ROC CDFS boundings were also able to show an increase in sampling efficiency,

yielding a theoretical elimination of 84 percent of false positives at the expense of

classifying only 8 false negatives out of the entire ROC CDFS validation set of 3680

cases. These results showed that the boundings constructed for the CDFS, while not

perfectly accurate, had the potential to improve over BAU sampling practices for a

design space with these characteristics.

Furthermore as the optimal boundings required much less features than those

found in the 97-D DES test, the computationl resources required to construct them

were much less significant as evidenced by the MET values presented in fig. 80. Such

low training times allow for sweeps to be performed to search for optimal feature

selection settings without being prohibitive. It was hypothesized that the difference

in training timese required between the FLOPS-ZFW and ROC CDFS boundings

stems from the greater amount of training data and more balanced classification

results present within the FLOPS-ZFW CDFS.
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Figure 78: Performance of the SVM Classifiers Bounding the 50-D FLOPS-ZFW
CDFS

Figure 79: Performance of the SVM Classifiers Bounding the 50-D ROC CDFS
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Figure 80: Method Execution Time (MET) Required for SVM Classifiers Bounding
the 50-D CDFSs
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With boundings for the CDFSs illustrating potential efficiency gains over BAU it

was decided to continue with the final steps of the methodology which leveraged the

boundings to generate adaptive samples for the NHC feasible space. Two separate

DOEs were devised for adaptive sampling purposes. The first adaptive sampling DOE

(ASE) was created to explore the global feasible space by querying the boundings of

each CDFS simultaneously for designs which are classified as feasible by all boundings.

To accomplish this, a dense PMC sample was generated for the design space and the

new points were queried by each of the CDFS bounding classifiers to determine if

the suggested design was likely feasible. Once 5000 designs were identified within the

dense sample which appeared globally feasible, the ASE DOE was created from this

set. The second adaptive sample DOE (ASR) was generated to refine the global NHC

boundary by querying the boundings of each CDFS simultaneously for designs which

were hardest to classify (classification uncertainty is high). This task was achieved by

again leveraging the dense PMC sample for the design space and selecting new points

which had classification probabilities for each grouping within some small threshold of

each other. For example, if a point had a 0.45 classification probability as feasible and

a corresponding probability of 0.55 as infeasible then the classifier could not determine

with great confidence to which grouping the design likely belongs. Thus this design

was assumed to be in the vicinity of the classifier boundary (or at least in a region of

poor sample resolution) and would be likely to be selected for the ASR DOE. Again

once 5000 designs were identified within the dense sample which appeared to be in

the vicinity of the on of the CDFS classifier boundaries, the ASR DOE was created

from this set.

Once the ASE and ASR DOEs were generated by leveraging the CDFS bounding

classifiers, they were evaluated using EDS. Their outputs were then classified and

utilized for their respective purposes. The classified output of the ASE DOE illus-

trated a decrease in global infeasible cases from approximately 30.0 percent in Run1
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to 10.5 percent. This improvement in sampling efficiency was enabled by the com-

bined CDFS boundings which caused the percentage of infeasible cases produced by

the FLOPS-ZFW error to fall from 24.8 to 7.1 percent and those produced by the

ROC error to fall from 2.2 to 0.2 percent. These results are summarized in Table 12.

Table 12: Summary of Reduction in Infeasible Design Cases Achieved through
Bounded Adaptive Sampling (BAS)

Run 1 Infeasible Cases ASE Infeasible Cases

CDFS Name Number Percentage Number Percentage

Global 4501 30.0 525 10.5

FLOPS-ZFW 3722 24.8 354 7.1

ROC 330 2.2 8 0.2

The classified output of the ASR DOE was used to refine the CDFS bounding

classifiers initially generated in the 1st iteration of the method, as such it was added

to the training data set from Run 1 and then utilized to train the 2nd iteration

of CDFS bounding classifiers. Once these new classifiers had been trained they were

compared against the 1st iteration utilizing the validation set from Run 2 to determine

in the boundary had indeed been refined. Table 13 illustrates this comparison and the

efficiency improvements achieved through BAS. Interestingly between the 1st and 2nd

iterations the ability of the CDFS boundings to avoid suggesting infeasible designs is

hardly changed however the bounding appears to become less conservative in nature

as the NFN is decreased more significantly ultimately leading to a SBD bound global

feasible design space subject to less mislassification.

With both knowledge gain observed through NHC variable identification as well

as sampling efficiency improvement demonstrated through successful use of SBD BAS

of CDFS, hypothesis 4 was considered substantiated. It is important to note that the

50-D DSE test was likely able to provide the methodology with an opportunity to

demonstrate its merits due largely to the increased sample resolution (compared to
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Table 13: Performance Comparison between CDFS Bounding Classifiers Generated
in the 1st and 2nd Iterations of Bounded Adaptive Sampling (BAS) for the LTA
HWB 50-D Design Space

BAS Iteration NFP NFN Percent Feasible Percent Misclassified

0 (Baseline PMC) 4075 0 72.0 28.0

1st Run1 899 464 93.8 9.4

2nd Run1+ASR 907 413 93.8 9.1

the 97-D space) and the more balanced classified data set which were both available.

The last step performed in this experiment was simply to perform a visual check that

the methodology had indeed done its job and thus a subset of the design space was

visualized in 2-D and 3-D scatterplot matrices.

Results Interpretation (Fig. 81-88) These figures illustrate 2-D and 3-D pro-

jections of the 50-D design space in 11 and 3 variables of interest respectively (ranked

highly in terms of relevance to the CDFSs). In these figures the green points represent

feasible designs while the red points represent infeasible designs. It is first important

to note that although much of the scatter of infeasible designs throughout the space

may appear random, there may yet be structure in where these failed designs exist

in the hypervolume which cannot be observed when the remaining 47 or 48 other

dimensions are collapsed. Secondly, large concentrations of infeasibile designs do ap-

pear in regions of the design space observable in two or three dimensions. When BAS

is performed, the adaptive samples which leverage the bounding classifiers show a

much lower ratio of infeasible to feasible points and also avoid those regions where

high densities of infeasible designs were encountered.

Looking at these figures it is immediately apparent how relevant TWR was to the

CDFSs. However it is also interesting to note that there are many feasible designs with

very low TWR values even though this region is prone to many infeasible designs. A

simplistic but effective approach to increase the rate of return following BAS sampling
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practices would be to increase the lower limit on the TWR variable, but doing so

would drastically reduce the hypervolume able to be explored. Additionally, TWR

is a design variable of great importance in aircraft conceptual design and one that

is desired to be minimized for optimal aircraft sizing. Thus implementation of this

methodology for DSE allows for exploration of potentially desirable regions of the

design space with the ability to avoid infeasible regions that would otherwise make

such large explorations prohibitively expensive. To illustrate the consequence of this

ability, of the top ten designs throughout the design space in terms of minimizing

block fuel burn, if the design space were truncated to the limits on TWR examined

in the 97-D case (increasing the lower limit from 0.210 to 0.257) half of these top ten

performing designs would be lost.

Another crucial takeaway from these visualizations is that some regions of the

design space may be completely denied by the BAS approach as evidenced by the

white voids appearing in the design space in the figures generated from the ASE

DOE. While these denied regions may not be purely infeasible they do represent

areas with large concentrations of infeasible designs and thus should be avoided by

regression models. Often when regression or surrogate models are fit to a design space

they are assumed valid over the entire Hypercubic design space, yet for a NHC design

space that is certainly not the case. Another benefit of utilizing a methodology such

as this one is that the CDFS boundings could be queried to ensure regression models

fit to the data remain within the regions for which they can be assumed valid adding

in a protection against model extrapolation.
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Figure 81: Scatterplot Matrix 2-D Design Space Visualization for the Global Feasible
Space using Run1 Data (approx. 15000 cases)
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Figure 82: Scatterplot Matrix 2-D Design Space Visualization for the Global Feasible
Space using ASE Data (approx. 5000 cases)

196



www.manaraa.com

Figure 83: Scatterplot Matrix 2-D Design Space Visualization for the FLOPS-ZFW
CDFS using Run1 Data (approx. 15000 cases)

197



www.manaraa.com

Figure 84: Scatterplot Matrix 2-D Design Space Visualization for the FLOPS-ZFW
CDFS using ASE Data (approx. 5000 cases)
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Figure 85: Scatterplot Matrix 2-D Design Space Visualization for the ROC CDFS
using Run1 Data (approx. 15000 cases)
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Figure 86: Scatterplot Matrix 2-D Design Space Visualization for the ROC CDFS
using ASE Data (approx. 5000 cases)
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Figure 87: 3-D Design Space Visualization for the FLOPS-ZFW CDFS using Run1
(L) and ASE (R) Data

Figure 88: 3-D Design Space Visualization for the ROC CDFS using Run1 (L) and
ASE (R) Data
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5.4.5 Conclusions and Consequences

Results for experiment 4 were produced through the implementation of the thesis

methodology on two different design spaces explored using EDS version 5.4 for the

conceptual design of an LTA HWB aircraft concept. The two design spaces differed in

number of dimensions (97-D and 50-D) and resolution with which they were sampled

(LPD: 1.010 and 1.202 respectively). The methodology ultimately failed to produce

any appreciable improvement compared to BAU DSE techniques like PMC sampling

for the 97-D design space. This failure is attributed the low resolution with which this

design space was sampled and the imbalance of the classified output which contained

relatively low percentages of infeasible designs vital to training accurate bounding

classifiers. The 50-D design space was created and explored using the methodology

and learning from these failures. Ultimately his test was able to show the capacity

for significant improvement over BAU sampling with the adoption of the SBD BAS

approach within the methodology. Hypothesis 4 and the thesis methodology in general

was considered substantiated based upon these results, but the 97-D DSE test also

provided evidence for when and how the methodology could fail.

202



www.manaraa.com

CHAPTER VI

CONCLUSION

6.1 Summary of Contributions

This thesis through experimentation and survey and synthesis of relevant literature

has yielded the following contributions:

� Evidence of use of MI as a Classifier for Non-Hypercubic experimental design

spaces (EXP 1)

� Establishment of effective Levels Per Dimension (LPD) as a similarity parameter

for distinguishing features in the design space (EXP 1)

� Informed DSE Guidance as a function of design space characteristics and relative

expense/consequence (synthesis of literature and own ideas)

� Illustration of the advantages of using a set-based as opposed to a global ap-

proach for determining the boundary of NHC feasible design spaces (EXP 3)

� Bounded 50-D LTA HWB design space in EDS (illustrated knowledge gain, and

failed case reduction on a real problem) (EXP 4)

� Set-Based Bounding and Adaptive Sampling (SeBBAS) Methodology (EXP 4,

synthesis of literature and own ideas)

� The Design Space Exploration Decision Support Methodology (DSE-DSM) (Over-

arching Thesis)
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6.1.1 Methodology Development

This thesis work produced a methodology which provides decision support for design

space exploration efforts for arbitrary design spaces. This methodology illustrates a

method to perform hypercubic classification as well as bounded adaptive sampling for

design spaces for problems which are computationally expensive, non-hypercubic and

subject to revisitation. It is important to note that this methodology is by no means

restricted to the conceptual aircraft design problem and is applicable for all complex

design problems with these attributes. Put simply, the main goal of the methodology

is to drastically improve the success rate for design cases evaluated within the de-

sign spaces defined by such problems. Because these problems are expensive and yet

many successful cases are still necessary to generate accurate surrogates or provide

visualization, it is imperative that the limits of the feasible design space be known

and understood so that computational resources are not repeatedly wasted explor-

ing infeasible regions. The methodology presented herein provides a structured and

somewhat robust means of accomplishing this goal.

6.1.2 Concluding Remarks

This thesis proposed a new methodology (DSE-DSM with SeBBAS) meant to pro-

vide design space exploration decision support and effective and efficient means of

examining problems which are computationally expensive, non-hypercubic in nature

and require revisitation. Motivating the development, testing and ultimate proof of

concept of this methodology is a design problem characterized by these elements and

concerned with the physics-based design of an advanced civil transport aircraft con-

cept. This design problem ultimately seeks to estimate the performance benefits of

such a concept and provide an assessment of its ability to help address some of the

major issues facing civil aviation today, most notably, the desired reduction in aircraft

fuel burn. Because of the aforementioned characteristics present within this design
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problem, current methods involving the use of traditional DOE to sample the space

and then generate surrogate models were found lacking in their ability to provide an

efficient solution. For this reason, once a design space has been classified as non-

hypercubic using a Mutual Information based test, the proposed methodology takes

an adaptive approach in which a sophisticated set of boundings are constructed uti-

lizing Machine Learning classifiers (random forests and kernel-based support vector

machines) for the design space. These boundings are integrated to form an estimate

for the global feasible design space which is then iteratively refined and exploited to

improve the useful rate of return for a given experimental budget. Drawing from

Set-Based Design techniques, this methodology uses the construction of constraint

defined feasible sets CDFS which are bound by classifiers and then ‘intergrated by

intersection’ to discover the feasible design space. Leveraging this set-based approach

and identifying the relevant variable subsets for the CDFSs allows for a superior rep-

resentation of the global feasible space for a given experimental budget. This feasible

space is what remains of the initially sampled hypercubic design space once all the

constraints, effects of correlated design variables and regions of computational method

infeasbility have been considered.

It was hypothesized that the representation of the design space and its defining

characteristics produced by the methodology would be superior to that which could be

obtained by contemporary methods for the same computational resource budget. This

claim was substantiated through the testing of four hypotheses within four separate

experiments aimed at different aspects of the problem considered and the proposed

methodology.

Through Experiment I, Mutual Information MI was demonstrated to provide a

useful means of hypercubic classification with the caveat that sufficient design space

sampling resolution was used. To generalize this concept of sample resolution, a

new similarity parameter was developed and coined effective ‘Levels Per Dimension’
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LPD. This parameter combines the effect of sample size and dimensionality into a

single metric determining sampling resolution while accounting for the exponential

growth of hypervolumes with the inclusion of additional dimensions. Using this metric

and a binned MI estimator, critical resolution thresholds were quantified for various

hypercubic and non-hypercubic constrained design spaces sampled by multiple initial

DOE. It was shown that when utilizing a Pseudo-Monte Carlo DOE for sampling, an

initial LPD of approximately 2 was sufficient for correctly resolving and classifying

most features within a design space.

Experiment II illustrated the general benefit obtained through the use of a bound-

ing classifier for the understanding and exploration of non-hypercubic design spaces.

Again the hypothesis presented within this experiment was only considered substan-

tiated when sufficient sample resolution was provided to the bounding classifier to

resolve features within the space. Interestingly, these critical resolutions were found

to be approximately those revealed in experiment I. Additionally, experiment II re-

vealed that a higher dimensional space, with only a subset of its dimensions being

non-hypercubic, can be seen as effectively collapsed from the point of view of a bound-

ing classifier for the non-hypercubic regions. This revelation pointed to the potential

for focused classifiers (like those constructed through set-based techniques) trained

on only a subset of the design variables to effectively utilize a higher resolution than

available to global classifiers with the same sample set.

A Set-Based approach was contrasted against a global approach for classifying and

bounding the non-hypercubic feasible design space in Experiment III. This experiment

illustrated that if the feasible regions formed by the constraint defined feasible sets

are disjoint, then from the same set of training data, a smaller subset of variables

can be identified that are relevant to the given CDFS and thus the other dimensions

can effectively be collapsed. This collapsing of dimensions artificially increases the

resolution (LPD) used to generate the bounding for that particular CDFS through
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the reduction of the number of variables or features used to construct the bounding

classifier. This results in set-based boundings that are more accurate (produce less

false positives and false negatives) than their global counterparts while requiring not

significantly more total computational effort to construct.

Ultimately, through the fourth and final experiment, the utility of DSE-DSM

and associated SeBBAS approach were demonstrated for the conceptual design of a

Large Twin Aisle LTA Hybrid Wing Body HWB aircraft within the Environmental

Design Space EDS modeling and simulation environment. Given a design problem

in 50 dimensions, the DSE-DSM methodology was able to increase the percentage of

feasible designs achieved through designs space exploration from 72.0 to 93.8 percent

when compared to Business As Usual BAU Pseudo-Monte Carlo PMC sampling

after only a single iteration. Additionally, the methodology was able to identify and

rank variables relevant to the non-hypercubic features present within the design space

all without significant additional computational expense compared to BAU.

This thesis through the use of DSE-DSM and SeBBAS demonstrated the capacity

for a more timely and resource conservative approach for the conceptual design of

advanced aircraft concepts as well as other problems with similar characteristics. A

capability to provide decision support for the exploration of arbitrary design spaces

was presented along with a means to classify, bound and adaptively sample design

spaces which require more advanced sampling techniques than provided by contempo-

rary DOE methods. This methodology and the design space representation it provides

allow for efficient surrogate generation, optimization, future design space exploration

and visualization for problems which are computationally expensive, non-hypercubic

and must be revisited.
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6.2 Consequences

The functionality of the methodology and its representative elements was demon-

strated through the experiments performed within this work. However, to convince

a user to adopt such a approach and abandon BAU practices requires an acknowl-

edgement of the consequences associated with its use. The following details some of

the major consequences associated with the use of DSE-DSM and SeBBAS to guide

DSE for generic design spaces:

� More Efficient Resource Use: One of the primary drivers for the use of

this methodology was the promise of more efficient use of computational re-

sources when performing DSE for NHC feasible design spaces. While compu-

tational expense is subjective, use of the methodology and in particular the

SeBBAS method allows for significant potential savings of computational re-

sources (quantified infeasible case reduction from 30.0 percent to 10.5 percent

within the practical conceptual design problem). For design spaces with large

NHC features, the methodology may likely enable DSE where previously infea-

sible due to unacceptably high percentages of infeasible designs.

� Identification of NHC Variables: Through the use of the Gini impurity and

feature selection through cross-validation, the methodology was able to iden-

tify sets of design variables relevant to specific CDFSs. Because of this, for a

given sample budget, the case density can be effectively increased through the

collapse of dimensions irrelevant to the construction a bounding classifier for

a particular CDFS. This ultimately allows for an improved understanding of a

high dimensional NHC feasible design space to be attained with significantly

less resources than would be possible when using a global approach. Further-

more, the extraction of these NHC variable sets can aid in understanding and

debugging large multidisciplinary Modeling and Simulation environments.
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� Expansion of Design Variable Ranges: The ability to adaptively sample

the design space leveraging boundings allows for the expansion of the ranges

on design variables. As the feasible/infeasible boundaries can be obtained, the

ranges on each of the design variables can be expanded until these limits are

encountered. This capability allows for a significant increase in the experimental

hypervolume yielding the potential to explore much more of the design space and

uncover desirable designs which were previously unattainable without expending

significantly more computational effort.

� Surrogate Monitoring for Extrapolation: When surrogates/regressions are

fit over a hypercubic space using business as usual practices, they are typically

assumed valid over the entire hypervolume. However, if NHC regions exist

where the design space is infeasible and/or no design points exist, then these

regressions are extrapolating in these areas of the design space. With the use of

the bounding classifiers provided by the methodology for NHC feasible spaces,

surrogates/regressions fit to the hypercubic design space can be monitored to

determine where they may be extrapolating and prevent incorrect conclusions

from being drawn in these regions.

� Bounded Optimization: The bounding classifiers produced for NHC feasible

spaces through use of the methodology effectively estimate boundaries for each

CDFS. While the exact boundaries are not known with perfect confidence to

the classifiers, the classifiers can be queried to determine if a given design likely

belongs to a given CDFS. This information can be utilized to perform bounded

optimization, allowing for infeasible/failed regions of the design space to be

avoided while optimal designs are sought. This allows for optimization to be

performed more efficiently, further conserving computational resources.
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6.3 Future Work

Although all the hypotheses tested in this work were ultimately considered substan-

tiated (with conditions) this by no means there is no more work left to do. The

following details just a few of the potential areas for expansion and refinement of the

ideas presented within this work:

1. Surrogate Generation and Monitoring: Generate surrogate models using

the same computational budget with a traditional sampling approach and a

DSE-DSM enabled approach. Compare surrogates for accuracy, are the DSE-

DSM of better quality? Can the bounding classifiers for the CDFSs correctly

show when surrogates are extrapolating?

2. Imposition of Performance Constraints: Impose performance constraints

on the design space and evaluate the ability of SeBBAS to bound regions of the

design space with high performing designs.

3. Tune Classifiers: Can the quality of the bounding classifiers produced by the

RF and SVM methods be improved significantly through the modification of

their respective tuning parameters and/or kernels?

4. Expand Design Problem Ranges: Can more NHC features/dimensions be

identified within the 50-D design space examined for the LTA HWB if the design

ranges are expanded?

5. Design Space Analysis: Determine the likely causes of the NHC regions

discovered in the 50-D LTA HWB design problem with EDS. Are they due to

physics, numerical issues or bugs within the code?
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APPENDIX A

TEST PROBLEMS

The following contains graphical depictions and the MATLAB code used to generate

all the test problems utilized within this work.

**Note for all code posted the following code applies:

n val = 5000; % Number of design cases (5000 for display)

n DV val = 2; % Number of design variables (2 or 3 for display)

DOE base = unifrnd(−0.5,0.5,n val,n DV val); % Baseline PMC DOE

A.1 Hypercubic Constrained Design Spaces

The following test problems were representative Hypercubic design spaces featuring

cases missing. These were used to test the MI classifier to determine if it could detect

a hypercubic space (and not be fooled into thinking the space was non-hypercubic)

even if some fraction of the baseline hypervolume was missing. In practical design

problems, these spaces may be observed if design variables are examined over ranges

in which they are infeasible. Additionally, if computational errors/instabilities cause

truly random failures throughout the design space, then feasible spaces which remain

hypercubic yet contain infeasible designs may also result.

A.1.1 Reduced Hypercube Single (RHS and RHS1)

This constrained design space featured a Reduced singular hypercube in all dimen-

sions (RHS) and only the 1st dimension (RHS). This test design space was utilized to

emulate design variables being evaluated over ranges for which they were infeasible.

It is important to note that the infeasible region for a particular design variable was
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purely independent of any other design variables. Therefore the feasible design space

is reduced from the baseline hypercube, yet remains hypercubic in nature.

A.1.1.1 MATLAB code

% Reduced Hypercube Single (RHS)

rmv Vol = 0.2;

Tgt Vol = 1 − rmv Vol;

HC base = (Tgt Vol)ˆ(1/n DV val);

bound = HC base/2;

DOE RHS = [];

n RHS = 0;

for i = 1:n val

if max(DOE base(i,:)) <= bound && ...

min(DOE base(i,:)) >= (−1*bound)

DOE RHS = [DOE RHS; DOE base(i,:)];

n RHS = n RHS+1;

end

end

% Reduced Hypercube Single 1−D (RHS1)

rmv Vol = 0.2;

Tgt Vol = 1 − rmv Vol;

HC base = Tgt Vol;

bound = HC base/2;

DOE RHS1 = [];

n RHS1 = 0;

for i = 1:n val

if max(DOE base(i,1)) <= bound && ...

min(DOE base(i,1)) >= (−1*bound)

DOE RHS1 = [DOE RHS1; DOE base(i,:)];

n RHS1 = n RHS1+1;
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end

end

A.1.1.2 Graphical Representation

Figure 89: 2-D and 3-D Design Space Visualization for RHS Constrained Design
Space

Figure 90: 2-D and 3-D Design Space Visualization for RHS1 Constrained Design
Space

A.1.2 Reduced Hypercube Multiple (RMS and RMS1)

This constrained design space featured multiple Reduced hypercubes in all dimensions

(RHM) and only the 1st dimension (RHM1). This test design space was utilized to

emulate design variables being evaluated over ranges for which they were infeasible

213



www.manaraa.com

resulting in multiple non-continuous feasible regions. It is important to note that the

infeasible region for a particular design variable was purely independent of any other

design variables. Therefore the feasible design space is reduced from the baseline

hypercube, yet remains hypercubic in nature.

A.1.2.1 MATLAB code

% Reduced Hypercube Multiple (RHM)

rmv Vol = 0.2;

Tgt Vol = 1 − rmv Vol;

HC base = (Tgt Vol)ˆ(1/n DV val)/2;

min b = −0.5 + HC base;

max b = 0.5 − HC base;

DOE RHM = [];

n RHM = 0;

for i = 1:n val

keep flag = 1;

for j = 1:n DV val

if DOE base(i,j) > min b && ...

DOE base(i,j) < max b

keep flag = 0;

break;

end

end

if keep flag == 1

DOE RHM = [DOE RHM; DOE base(i,:)];

n RHM = n RHM+1;

end

end

% Reduced Hypercube Multiple 1−D (RHM1)
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rmv Vol = 0.2;

Tgt Vol = 1 − rmv Vol;

HC base = (Tgt Vol)/2;

min b = −0.5 + HC base;

max b = 0.5 − HC base;

DOE RHM1 = [];

n RHM1 = 0;

for i = 1:n val

if DOE base(i,1) > min b && ...

DOE base(i,1) < max b

else

DOE RHM1 = [DOE RHM1; DOE base(i,:)];

n RHM1 = n RHM1+1;

end

end

A.1.2.2 Graphical Representation

Figure 91: 2-D and 3-D Design Space Visualization for RHM Constrained Design
Space

A.1.3 Random Removal Fixed Percentage (RRFP)

This constrained design space had a Fixed Percentage (10 percent) of the cases ran-

domly removed. There are no graphical depictions for this constrained design space
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Figure 92: 2-D and 3-D Design Space Visualization for RHM1 Constrained Design
Space

as it appears simply like the baseline PMC design space but with fewer cases. In a

practical problem a feasible space of this nature could result from random failures

throughout the design space.

A.1.3.1 MATLAB code

%% Apply Random Removal Fixed Percentage constraint

% (randomly remove 10% of cases)

C name = 'RRFP';

fprintf('\tConstraint: %s\t', C name);

tic;

DOE RRFP = [];

n RRFP = 0;

sp RRFP = 1; % successful case percentage

% Determining the unique indices of the cases to remove

rmv p = 0.1; % Percentage of cases to be removed

Ind vec = sort(ceil(unifrnd(0,n val,rmv p*n val,1)));

unique check = unique(Ind vec);

n needed = length(Ind vec) − length(unique check);

while n needed > 0
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add ind = ceil(unifrnd(0,n val,n needed,1));

Ind vec = [unique check; add ind];

unique check = unique(Ind vec);

n needed = length(Ind vec) − length(unique check);

end

Ind vec = sort(Ind vec);

i Ind = 1;

more to add = 0;

for i = 1:n val

if i ˜= Ind vec(i Ind)

DOE RRFP = [DOE RRFP; DOE base(i,:)];

n RRFP = n RRFP+1;

else

i Ind = i Ind+1;

if i Ind > length(Ind vec)

more to add = 1;

break;

end

end

end

if more to add == 1

DOE RRFP = [DOE RRFP; DOE base(i+1:n val,:)];

n RRFP = n RRFP+(n val−i);

end

sp RRFP = n RRFP/n val;

sp RRFP arr(rep i) = sp RRFP;

A.1.4 Random Removal n/d (RRND)

This constrained design space randomly removed cases until a specified n/d value

was achieved. There are no graphical depictions for this constrained design space

as it appears simply like the baseline PMC design space but with fewer cases. In a

practical problem a feasible space of this nature could result from random failures
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throughout the design space.

A.1.4.1 MATLAB code

%% Apply Random Removal N/D constraint (randomly remove

% cases until a fixed n/D ratio is hit)

C name = 'RRND';

fprintf('\tConstraint: %s\t', C name);

tic;

DOE RRND = [];

n RRND = 0;

sp RRND = 1; % successful case percentage

n D = n val/n DV val;

n D tgt = n D tgt arr(n i);

n to rmv = 0;

if n D >= n D tgt

n to rmv = (n D−n D tgt)*n DV val;

end

Ind vec = sort(ceil(unifrnd(0,n val,n to rmv,1)));

unique check = unique(Ind vec);

n needed = length(Ind vec) − length(unique check);

while n needed > 0

add ind = ceil(unifrnd(0,n val,n needed,1));

Ind vec = [unique check; add ind];

unique check = unique(Ind vec);

n needed = length(Ind vec) − length(unique check);

end

Ind vec = sort(Ind vec);

i Ind = 1;

more to add = 0;

if ˜isempty(Ind vec)

for i = 1:n val
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if i ˜= Ind vec(i Ind)

DOE RRND = [DOE RRND; DOE base(i,:)];

n RRND = n RRND+1;

else

i Ind = i Ind+1;

if i Ind > length(Ind vec)

more to add = 1;

break;

end

end

end

else

DOE RRND = DOE base;

end

if more to add == 1

DOE RRND = [DOE RRND; DOE base(i+1:n val,:)];

n RRND = n RRND+(n val−i);

end

sp RRND = n RRND/n val;

sp RRND arr(rep i) = sp RRND;

A.2 Non-Hypercubic Constrained Design Spaces

The following test problems were representative Non-Hypercubic design spaces fea-

turing cases missing. These were used to test the MI classifier to determine if could

detect a non-hypercubic space. Some of these test cases were also utilized to create

NHC design spaces for use in Experiments II and III. Each unique constrained de-

sign space only features a single type of constraint which determines which cases will

remain feasible. In a practical problem, multiple constraints of varying types may be

present and thus the global feasible space that results is the intersection of the fea-

sible spaces corresponding to each constraint. In a similar fashion these constrained

design spaces can be combined to emulate realistic feasible design spaces that may
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be expected from a practical engineering problem.

A.2.1 Hypersphere Removal (HS and HS2)

This constrained design space featured a Hypersphere removed from the cneter of

the design space in all dimensions (HS) and only the first 2 dimensions (HS2). The

purpose of this constraint was to provide a representative design space that featured

a void and thus made the feasible space non-convex and the boundary non-linear.

A.2.1.1 MATLAB code

% Hypersphere (HS) −d−ball Void of constant volume

Tgt Vol = 0.8; % Change this to change % failed volume

Vball = 1−Tgt Vol;

% Use different forumla to calculate R based on if n DV val is odd or even

R = 0;

if mod(n DV val,2) == 0 % n DV val is even

k = (n DV val)/2;

%R = (Vball*factorial(n DV val/2)/piˆ(n DV val/2))ˆ(1/n DV val);

R = (Vball*factorial(k)/piˆ(k))ˆ(1/(2*k));

else

k = (n DV val−1)/2;

R = (Vball*factorial(2*k+1)/(2*factorial(k)*(4*pi)ˆk))ˆ(1/(2*k+1));

end

n HS = 0;

DOE HS = [];

for i = 1:n val

r i = sqrt(sumsqr(DOE base(i,:))); % For MATLAB

%r i = sqrt(sumsq(DOE base(i,:))); % For OCTAVE

if r i >= R

DOE HS = [DOE HS; DOE base(i,:)];

n HS = n HS+1;
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end

end

A.2.1.2 Graphical Representation

Figure 93: 2-D and 3-D Design Space Visualization for HS Constrained Design Space

Figure 94: 2-D and 3-D Design Space Visualization for HS2 Constrained Design
Space

A.2.2 Linear Constraint Large (LCL and LCL2)

This constrained design space featured a Large Linear Constraint in a corner of the

design space in all dimensions (LCL) and only the first 2 dimensions (LCL2). The

purpose of this constraint was to provide a representative design space that featured
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a linear constraint to make the feasible space NHC. As it was a ‘large’ constraint it

was meant to be easier to detect and/or successfully bound.

A.2.2.1 MATLAB code

% Linear Constraint Large

Tgt Vol = 0.2; % Change this to change % failed volume

max bound = 0.5;

base len = (Tgt Vol*factorial(n DV val))ˆ(1/n DV val);

n LCL = 0;

DOE LCL = [];

DOE F = [];

for i = 1:n val

if sum(DOE base(i,:)) <= (max bound*n DV val − base len)

DOE LCL = [DOE LCL; DOE base(i,:)];

n LCL = n LCL+1;

else

DOE F = [DOE F; DOE base(i,:)];

end

end

% Linear Constraint Large 2−D

Tgt Vol = 0.2; % Change this to change % failed volume

max bound = 0.5;

base len = (Tgt Vol*factorial(2))ˆ(1/2);

n LCL2 = 0;

DOE LCL2 = [];

DOE F = [];

for i = 1:n val

if sum(DOE base(i,1:2)) <= (max bound*2 − base len)

DOE LCL2 = [DOE LCL2; DOE base(i,:)];

n LCL2 = n LCL2+1;
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else

DOE F = [DOE F; DOE base(i,:)];

end

end

A.2.2.2 Graphical Representation

Figure 95: 2-D and 3-D Design Space Visualization for LCL Constrained Design
Space

Figure 96: 2-D and 3-D Design Space Visualization for LCL2 Constrained Design
Space

A.2.3 Linear Constraint Small (LCS and LCS2)

This constrained design space featured a Small Linear Constraint in a corner of the

design space in all dimensions (LCS) and only the first 2 dimensions (LCS2). The
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purpose of this constraint was to provide a representative design space that featured

a linear constraint to make the feasible space NHC. As it was a ‘small’ constraint it

was meant to be harder to detect and/or successfully bound.

A.2.3.1 MATLAB code

% Linear Constraint Small

% Code is same as LCL but with Tgt Vol = 0.05 instead of 0.2

Tgt Vol = 0.05; % Change this to change % failed volume

A.2.3.2 Graphical Representation

Figure 97: 2-D and 3-D Design Space Visualization for LCS Constrained Design
Space

A.2.4 Non-Linear Constraint Large (NLCL and NLCL2)

This constrained design space featured a Large Non-Linear Constraint in a corner of

the design space in all dimensions (NLCL) and only the first 2 dimensions (NLCL2).

The purpose of this constraint was to provide a representative design space that

featured a linear constraint to make the feasible space NHC and the boundary non-

convex. As it was a ‘large’ constraint it was meant to be easier to detect and/or

successfully bound.
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Figure 98: 2-D and 3-D Design Space Visualization for LCS2 Constrained Design
Space

A.2.4.1 MATLAB code

% Non−Linear Constraint

Tgt Vol = 0.2; % Change this to change % failed volume

Vball = 2ˆn DV val*Tgt Vol;

max bound = 0.5;

% Use different forumla to calculate R based on if n DV val is odd or even

R = 0;

if mod(n DV val,2) == 0 % n DV val is even

k = (n DV val)/2;

%R = (Vball*factorial(n DV val/2)/piˆ(n DV val/2))ˆ(1/n DV val);

R = (Vball*factorial(k)/piˆ(k))ˆ(1/(2*k));

else

k = (n DV val−1)/2;

R = (Vball*factorial(2*k+1)/(2*factorial(k)*(4*pi)ˆk))ˆ(1/(2*k+1));

end

n NLCL = 0;

DOE NLCL = [];

for i = 1:n val

case translated = max bound − DOE base(i,:);
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r i = sqrt(sumsqr(case translated)); % For MATLAB

%r i = sqrt(sumsq(case translated)); % For OCTAVE

if r i >= R

DOE NLCL = [DOE NLCL; DOE base(i,:)];

n NLCL = n NLCL+1;

end

end

% Non−Linear Constraint 2−D

Tgt Vol = 0.2; % Change this to change % failed volume

Vball = 2ˆ2*Tgt Vol;

max bound = 0.5;

% Use different forumla to calculate R based on if n DV val is odd or even

R = 0;

k = 1; % k = 2/2

R = (Vball*factorial(k)/piˆ(k))ˆ(1/(2*k));

n NLCL2 = 0;

DOE NLCL2 = [];

for i = 1:n val

case translated = max bound − DOE base(i,1:2);

r i = sqrt(sumsqr(case translated)); % For MATLAB

%r i = sqrt(sumsq(case translated)); % For OCTAVE

if r i >= R

DOE NLCL2 = [DOE NLCL2; DOE base(i,:)];

n NLCL2 = n NLCL2+1;

end

end

A.2.4.2 Graphical Representation

A.2.5 Non-Linear Constraint Small (NLCS and NLCS2)

This constrained design space featured a Small Non-Linear Constraint in a corner of

the design space in all dimensions (NLCS) and only the first 2 dimensions (NLCS2).
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Figure 99: 2-D and 3-D Design Space Visualization for NLCL Constrained Design
Space

Figure 100: 2-D and 3-D Design Space Visualization for NLCL2 Constrained Design
Space

The purpose of this constraint was to provide a representative design space that

featured a non-linear constraint to make the feasible space NHC and the boundary

non-convex. As it was a ‘small’ constraint it was meant to be harder to detect and/or

successfully bound.

A.2.5.1 MATLAB code

% Non−Linear Constraint Small
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% Code is same as NLCL but with Tgt Vol = 0.05 instead of 0.2

Tgt Vol = 0.05; % Change this to change % failed volume

A.2.5.2 Graphical Representation

Figure 101: 2-D and 3-D Design Space Visualization for NLCS Constrained Design
Space

Figure 102: 2-D and 3-D Design Space Visualization for NLCS2 Constrained Design
Space

A.2.6 Checkerboard Coarse (CBC and CBC2)

This constrained design space featured a Coarse Checkerboard Constraint (2 bins per

dimension) affecting the design space in all dimensions (CBC) and only the first 2

dimensions (CBC2). The purpose of this constraint was to provide a representative
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design space that featured strong correlation between variables and a discontinuous

feasible space. This constraint denied half of the design space and due to its ‘coarse’

pattern it was meant to be easier to detect and/or successfully bound. Although this

constraint would be unlikely to appear in this form in a practical design space, it could

be representative of discontinuous plateaus or point clouds that can appear in feasible

spaces once performance constraints are applied. Additionally this constrained design

space has been featured in literature for use in demonstrating MI’s ability to detect

correlation in various design spaces [45].

A.2.6.1 MATLAB code

% Checkerboard Coarse in all dims

n bins = 2;

bin rng = 1/n bins;

DOE binned = ceil((DOE base+0.5).*n bins);

DOE sign = −1.*mod(DOE binned,2)+0.5;

DOE prod = prod(transpose(DOE sign));

n CBC = 0;

DOE CBC = [];

for i = 1:n val

if DOE prod(i) > 0

DOE CBC = [DOE CBC; DOE base(i,:)];

n CBC = n CBC+1;

end

end

% Checkerboard Coarse only in first 2 dims

DOE base = unifrnd(−0.5,0.5,n val,n DV val);

n bins = 2;

bin rng = 1/n bins;
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DOE binned = ceil((DOE base(:,1:2)+0.5).*n bins);

DOE sign = −1.*mod(DOE binned,2)+0.5;

DOE prod = prod(transpose(DOE sign));

n CBC2 = 0;

DOE CBC2 = [];

num Constraints = 1;

Constraint mat = zeros(n val,num Constraints);

for i = 1:n val

if DOE prod(i) > 0

DOE CBC2 = [DOE CBC2; DOE base(i,:)];

n CBC2 = n CBC2+1;

Constraint mat(i) = 1;

end

end

A.2.6.2 Graphical Representation

Figure 103: 2-D and 3-D Design Space Visualization for CBC Constrained Design
Space

A.2.7 Checkerboard Fine (CBF and CBF2)

This constrained design space featured a Fine Checkerboard Constraint (10 bins per

dimension) affecting the design space in all dimensions (CBF) and only the first 2

dimensions (CBF2). The purpose of this constraint was to provide a representative
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Figure 104: 2-D and 3-D Design Space Visualization for CBC2 Constrained Design
Space

design space that featured strong correlation between variables and a discontinuous

feasible space. This constraint denied half of the design space and due to its ‘fine’

pattern it was meant to be harder to detect and/or successfully bound. Again, this

type of constraint would likely not manifest in this form in a practical problem, but

could be representative for design spaces subjected to pockets of infeasibility due to

convergence issues.

A.2.7.1 MATLAB code

% Checkerboard Fine in all dims

% Code is same as CBC except n bins = 10 instead of 2

n bins = 10;

A.2.7.2 Graphical Representation
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Figure 105: 2-D and 3-D Design Space Visualization for CBF Constrained Design
Space

Figure 106: 2-D and 3-D Design Space Visualization for CBF2 Constrained Design
Space
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APPENDIX B

EDS LTA HWB DESIGN SPACE DETAILS

The following contains details of the variables and constraints/failure modes pertinent

to the LTA HWB design spaces investigated with the EDS Modeling and Simulation

Environment in Experiment IV.

B.1 97-D LTA HWB Design Space

The 97-D LTA HWB Design Space (and the output from its DSE) was not constructed

by the author but rather post processed. As such the design variables used for the

modeling of the LTA HWB are a collection of vehicle parameters and technology

k-factors (scalars on model parameters to account for the influences of technology)

which were deemed relevant by users of EDS for the modeling of a technology infused

LTA HWB aircraft concept. The ranges on the variables shown have been refined by

expert users through years of modeling aircraft concepts within EDS. Thus the 97-D

design space, while it does feature failed/infeasible designs, has been tuned in the DV

to bound a hypervolume of interest with an acceptable percentage of failed designs.

B.1.1 Design Variables

The following table lists the details of the 97 continuous design variables used to

define this particular design space for the LTA HWB.
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Table 14: Design Variable Details (97-D 1 of 6)

Variable Lower
Limit

Upper
Limit

Parent
Code

Description

ABTC 0.000 0.010 NPSS Bleed flow required for
ABTC

Burner Liner rho 0.069 0.322 WATE Burner liner material den-
sity

Burnereff 0.992 0.997 NPSS Burner efficiency

Byp Nozz s Wt 0.850 1.500 WATE Bypass nozzle weight scalar

Cooled Cooling
Nondimensional
Weight

0.000 9.000 NPSS Cooled cooling non-
dimensional weight

Core Nozz s Wt 0.650 1.150 WATE Core nozzle weight scalar

Cust Bleed 0.590 3.930 NPSS Engine customer bleed (cus-
tomer)

Cust Bleed Map 0.000 0.040 NPSS Engine customer bleed
(function of ambient)

d Burn dP 0.040 0.050 NPSS Burner pressure drop inter-
cept

DISAP -10.115 0.000 ANOPP Suppression factor on fan
discharge noise (Approach)

DISTO -11.740 0.000 ANOPP Suppression factor on fan
discharge noise (Takeoff)

Duct15 dP 0.018 0.028 NPSS Duct 15 pressure drop (by-
pass duct)

Ext Ratio 1.000 1.300 NPSS Extraction ratio at Aero De-
sign Point

Fan AR Fact 1.000 1.500 WATE Aspect ratio factor applied
to fan blades and stators

Fan bladeSolidity 0.060 1.500 WATE Fan blade solidity

Fan Deff -0.018 0.013 NPSS Fan efficiency delta at Aero
Design Point (from histori-
cal curve)

Fan HtoT 0.250 0.300 NPSS Fan hub to tip ratio
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Table 15: Design Variable Details (97-D 2 of 6)

Variable Lower
Limit

Upper
Limit

Parent
Code

Description

Fan numBlades 16.000 18.000 WATE Number of fan blades

Fan SpecW 42.752 45.270 NPSS Fan specific flow at Aero De-
sign Point

FCDO 0.989 1.000 FLOPS Lift independent drag factor

FCDSUB 0.900 1.100 FLOPS Factor to increase or de-
crease all subsonic drag co-
efficients

FPR 1.300 1.500 NPSS Fan Pressure Ratio at Aero
Design Point

FRFU 0.680 1.000 FLOPS Fuselage weight factor

FRLGM 1.000 1.030 FLOPS Landing gear weight, main

FRLGN 1.000 1.030 FLOPS Landing gear weight, nose

FRWI 0.750 1.000 FLOPS total wing weight factor

FRWI1 1.165 1.576 FLOPS First term in wing weight
equation- loosely corre-
sponds to bending material
weight

FRWI2 0.572 0.783 FLOPS Second term in wing weight
equation- loosely corre-
sponds to control surfaces,
spars and ribs

GearBoxLosses 0.010 0.015 NPSS Percent losses from gearbox-
Applied to LP shaft

GustLoad 0.600 1.100 WATE Gust load sizing load as a
percent of normal

GW 4.932e5 5.548e5 FLOPS Ramp weight, lb-Initial
guess

HPC AFC LossRatio 1.000 1.500 NPSS Ratio of baseline loss coef-
ficient over loss coefficient
with endwall and boundary
layer active flow control

HPC AFC nStages 0.000 4.000 NPSS Number of HPC stages to
apply AFC efficiency gain
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Table 16: Design Variable Details (97-D 3 of 6)

Variable Lower
Limit

Upper
Limit

Parent
Code

Description

HPC Deff 0.004 0.050 NPSS HPC efficiency delta at aero
design point

HPC Disk rho 0.800 1.000 WATE HPC disk material density

HPC Dutip -380.000 -150.074 NPSS HPC tip speed delta at aero
design point

HPC FlowControl 0.000 0.020 NPSS Bleed ow required per stage

HPC FSPRmax 1.660 1.900 NPSS Maximum HPC 1st stage
PR

HPCPR 16.000 22.000 NPSS HPCPR at aero design point

HPT Blade rho 0.302 0.312 WATE HPT blade material density

HPT delta des-
BladeTemp

50.000 450.000 NPSS HPT blade temperature in-
crease

HPT delta
desVaneTemp1

50.000 675.000 NPSS HPT vane 1 temperature in-
crease

HPT delta
desVaneTemp2

50.000 675.000 NPSS HPT vane 2 temperature in-
crease

HPT eff 0.925 0.946 NPSS HPT adiabatic efficiency at
Aero Design Point

HPT Load 0.930 1.230 WATE HPT GE loading

HPT Stator rho 0.180 0.312 WATE HPT stator material density

HPX 0.000 457.000 NPSS Engine horse power extrac-
tion (constant)

HPX map highAlt 0.000 250.000 NPSS Engine horse power extrac-
tion needed above 18000k
(function of ambient)

HX deltaT 0.000 400.000 NPSS Cooled cooling ow temper-
ature drop across heat ex-
changer

HX effect 0.700 0.900 NPSS Cooled Cooling heat ex-
changer effectiveness

INLAP -12.885 0.000 ANOPP Suppression factor on inlet
noise
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Table 17: Design Variable Details (97-D 4 of 6)

Variable Lower
Limit

Upper
Limit

Parent
Code

Description

INLTO -12.880 0.000 ANOPP Suppression factor on inlet
noise

IntercoolerBleedFlow 0.000 0.080 NPSS Intercooler bleed flow from
bypass

IntercoolerCoreDP 0.000 0.050 NPSS Intercooler core stream dP

IntercoolerHX effect 0.700 0.900 NPSS Intercooler heat exchanger
effectiveness

Intercooler Nondi-
mensional Weight

0.000 11.000 NPSS Intercooler non-dimensional
weight

JETTO -3.625 0.000 ANOPP Suppression factor on jet
noise

LPC Deff 0.018 0.058 NPSS LPC efficiency delta at Aero
Design Point

LPC Disk rho 0.800 1.000 WATE LPC Disk material density

LPC Stator rho 0.052 0.168 WATE LPC stator material density

LPCPR 1.364 3.125 NPSS LPCPR at aero design point

LPT AFC LossRatio 1.000 1.500 WATE Ratio of baseline loss coef-
ficient over loss coefficient
with active flow control

LPT AFC nStages 0.000 2.000 NPSS Number of rear LPT stages
to apply AFC

LPT Blade rho 0.157 0.313 WATE LPT blade material density

LPT Blade2 rho 0.157 0.286 WATE LPT blade material density

LPT Deff 0.020 0.112 NPSS LPT efficiency delta

LPT delta des-
BladeTemp

50.000 450.000 NPSS LPT blade temperature in-
crease

LPT delta
desVaneTemp

50.000 675.000 NPSS LPT vane temperature in-
crease

LPT FlowControl 0.000 0.015 NPSS Bleed flow required for LPT
ow control

LPT Load 1.000 1.300 WATE LPT GE loading
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Table 18: Design Variable Details (97-D 5 of 6)

Variable Lower
Limit

Upper
Limit

Parent
Code

Description

LPT Stator rho 0.157 0.313 WATE LPT stator material density

LPT Stator2 rho 0.157 0.286 WATE LPT stator material density

MGRAP -3.000 0.000 ANOPP Suppression factor on main
landing gear

NGRAP -3.000 0.000 ANOPP Suppression factor on nose
landing gear

PER1 1.250 1.350 ANOPP Core nozzle chevrons 1=no
chevrons, 2= full coverage
chevrons

PER2 1.000 1.350 ANOPP Bypass nozzle chevrons
1=no chevrons, 2= full
coverage chevrons

S BypNozzCv lowAlt 0.990 1.000 NPSS Core nozzle velocity coeffi-
cient scalar at low altitude

s CDft wing 0.940 1.000 NPSS Scalar for the turbulent skin
friction drag on the wing

S CoreNozzCv highAlt 0.995 1.000 NPSS Core nozzle velocity coeffi-
cient scalar at high altitude

S CoreNozzCv lowAlt 0.990 0.998 NPSS Core nozzle velocity coeffi-
cient scalar at low altitude

s HPT ChargeEff 0.650 1.000 NPSS HPT chargeable (exit)
cooling effectiveness factor
scalar

s HPT NonChargeEff 0.900 1.000 NPSS HPT non-chargeable (inlet)
cooling effectiveness factor
scalar

sAccess Wt 0.072 0.172 WATE Engine accessories weight
fraction of bare engine
weight

sInl Nacelle thick 0.340 1.000 WATE Nacelle radius delta scalar

SWETF 0.940 1.000 ANOPP Fuselage wetted area scalar

T4margin -171.000 -121.400 NPSS Difference in T4 between
MTO and MCT
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Table 19: Design Variable Details (97-D 6 of 6)

Variable Lower
Limit

Upper
Limit

Parent
Code

Description

T4max 3300.000 3700.000 NPSS Maximum T4 (set at Take
off)

ThrustReverserWeight 0.500 1.000 WATE Scalar for thrust reverser
weight

TOC Wratio 1.019 1.041 NPSS Mass flow of Top of Climb to
Aero Design Poin

TransREWingUpper 0.000 24.000 NPSS Turbulent transition
Reynolds number for upper
wing surface assuming a 20
degree sweep

TRLN 0.000 50.000 FLOPS Percent laminar flow nacelle
lower surface

TRUN 0.000 50.000 FLOPS Percent laminar flow nacelle
upper surface

TWR 0.257 0.284 FLOPS Thrust to weight ratio- (DE-
SIGN)

VCTE 0.000 0.500 NPSS Variable camber trailing
edge scalar

WAC 1.000 2.200 FLOPS Air conditioning group
weight scalar

WAPU 1.000 3.000 FLOPS Auxiliary power unit weight
scalar

WHYD 0.800 1.000 FLOPS Hydraulics group weight
scalar

B.1.2 Constraints/Failure Modes

The 97-D LTA HWB design space was subject to nine distinct modes of failure/in-

feasibility. These modes all represent code-based or convergence failures encountered

during exploration of the 97-D design space. It is important to note that none of
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these failure modes were specified a-priori nor do they represent any form of per-

formance constraint (they are native to the Modeling and Simulation environment

and HTCondor). The failure modes encountered for the 97-D design space were as

follows:

� FLOPS-ZFW: FLOPS Zero Fuel Weight ZFW error (vehicle sizing) - occurs

when the sized vehicle returns a zero fuel weight before the mission has been

completed

� ANOPP: ANOPP error (noise) - failure of the noise module to run, one of the

last errors encountered in the model execution chain

� CONDOR: HTCondor error (distributed computing) - failure of the distributed

computing software or remote host to properly run and return a job

� Cum-Noise: Cumulative Noise below threshold (noise) - failure at one or more

of the certification noise points such that the cumulative aircraft noise value

calculated is unrealistic

� ROC: Rate Of Climb insufficient error (vehicle sizing) - failure in the vehicle

sizing routine in which the aircraft does not maintain the capability for a positive

rate of climb throughout its mission profile.

� MDP: Multi-Design Point error (engine sizing) - failure to converge on an

engine design which could simultaneously satisfy the constraints at the multiple

design points (Takeoff, Top Of Climb, etc.)

� Thrust-Conv: Thrust Convergence error (engine sizing) - engine sizing could

not converge on the required thrust within a set number of iterations

� WATE: WATE error (engine flowpath) - failure in the designed engine flowpath

to meet requirements
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� Main-Conv: Main Design Loop Convergence error (convergence) - design loop

between between engine and vehicle sizing could not converge within a set num-

ber of iterations

B.2 50-D LTA HWB Design Space

The 50-D LTA HWB Design Space (and the output from its DSE) was constructed

and run by the author. In order to increase the available resolution for a given case

budget, the number of design variables was reduced from 97 to 50, while retaining

the most important variables of the original set. An additional variable (TO Thrust)

was added to the original set, but the ranges on the variables remained unchanged

except for a single variable, TWR.

B.2.1 Design Variables

As the 50-D design space was for the most part a pared down version of the 97-D

space only the differences between the two will be shown in this section. The following

variables were kept for the 50-D space and their ranges perserved:

HPC Dutip, HPC FSPRmax, HPCPR, IntercoolerHX effect, LPCPR,

Burnereff, HX deltaT, Cust Bleed Map, d Burn dP, Duct15 dP, Fan Deff,

HPC Deff, HPT delta des BladeTemp, HPT delta des VaneTemp1, HPT delta des

VaneTemp2, HPT eff, HPT Load, HPX, HPX map highAlt, Intercooler

BleedFlow, Intercooler CoreDP, LPC Deff, LPT Deff, LPT delta des Blade-

Temp, LPT delta desVaneTemp, LPT Load, T4margin, TRLN, TRUN,

WAC, Byp Nozz s Wt, FCDO, FCDSUB, FRFU, FRWI, FRWI1, FRWI2,

s HPT ChargeEff, s HPT NonChargeEff, GW, TO Thrust, TWR, Gust-

Load, VCTE, s CDft wing, sInl Nacelle thick, CooledCooling Nondimen-

sionalWeight, Intercooler NondimensionalWeight, TransREWingUpper, SWETF
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The following table lists the differences between the 97-D space for two of the 50

continuous design variables used to define this particular design space for the LTA

HWB.

242



www.manaraa.com

Table 20: Design Variable Details (50-D Differences)

Variable Lower
Limit

Upper
Limit

Parent
Code

Description

TO Thrust 4.973e4 6.728e4 NPSS Takeoff thrust [lbs]

TWR 0.210 0.284 FLOPS Thrust to weight ratio- (DE-
SIGN)

B.2.2 Constraints/Failure Modes

The 50-D LTA HWB design space was subject to seven distinct modes of failure/in-

feasibility. These modes all represent code-based or convergence failures encountered

during exploration of the 50-D design space. The noise failure modes are missing for

this design space as the noise module was deactivated for DSE of this design space.

It is important to note that none of these failure modes were specified a-priori nor do

they represent any form of performance constraint (they are native to the Modeling

and Simulation environment and HTCondor). The failure modes encountered for the

50-D design space were as follows:

� FLOPS-ZFW: FLOPS Zero Fuel Weight ZFW error (vehicle sizing) - occurs

when the sized vehicle returns a zero fuel weight before the mission has been

completed

� CONDOR: HTCondor error (distributed computing) - failure of the distributed

computing software or remote host to properly run and return a job

� ROC: Rate Of Climb insufficient error (vehicle sizing) - failure in the vehicle

sizing routine in which the aircraft does not maintain the capability for a positive

rate of climb throughout its mission profile.

� MDP: Multi-Design Point error (engine sizing) - failure to converge on an

engine design which could simultaneously satisfy the constraints at the multiple
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design points (Takeoff, Top Of Climb, etc.)

� Thrust-Conv: Thrust Convergence error (engine sizing) - engine sizing could

not converge on the required thrust within a set number of iterations

� NPSS-OFF: NPSS Off-Design error (engine off-design) - failure in the designed

engine to meet requirements of off design conditions

� Main-Conv: Main Design Loop Convergence error (convergence) - design loop

between between engine and vehicle sizing could not converge within a set num-

ber of iterations
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